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EXECUTIVE SUMMARY 

This report summarizes the development, demonstration, and application of an inversion-based 
methodology for early leakage detection using pressure and surface deformation monitoring data. 
The report is one of two deliverables resulting from a Lawrence Berkeley National Laboratory 
(LBNL) National Risk Assessment Partnership (NRAP) project aimed at developing, testing, and 
applying novel methods for modeling carbon dioxide (CO2) geologic storage and jointly 
inverting monitoring data for leakage detection. The ability to identify potential leakage 
pathways with monitoring data and continually monitor localized leakage of CO2 and/or brine is 
essential for the science-based quantitative risk assessment at the core of the mission of the 
NRAP project. 

The basic concept of early leakage detection is to identify pressure-driven brine leakage via joint 
inversion of pressure and deformation anomalies as early as possible, ideally long before the CO2 
plume would reach the leakage locations. If successful, this would provide early warning of 
potential CO2 leakage, and risk management can be initiated to avoid CO2 leakage. Risk 
management would likely start with simulating CO2 migration to predict the timing and 
magnitude of CO2 leakage through these pathways, which could then lead to deploying 
mitigation measures for leakage prevention as well as additional monitoring at the potential 
leakage locations. The monitoring data identified as particularly useful for early detection of 
brine leakage are: (1) pressure data from monitoring wells within/above the storage reservoir, 
and (2) Interferometric Synthetic Aperture Radar (InSAR) (and/or tiltmeter) data showing land 
surface deformations. Joint inversion of such complementary monitoring data types—the first 
providing quantitative measurements at a few borehole locations, and the latter giving 
quantitative and qualitative information over large areas—will improve early identification of the 
leakage signals and the high-permeability structures causing leakage. The inversion-based early 
leakage detection technique described in this report is complementary to current techniques for 
CO2 leakage detection which are based on the physical, geophysical, or/and geochemical 
signatures that are induced by migrating CO2 and that can be observed in the deep and shallow 
subsurface, at the land surface, and in the atmosphere. Many of these techniques have relatively 
low spatial resolution and coverage, in comparison to the footprint of CO2 plumes, and all these 
techniques can only detect anomalous CO2 signals long after CO2 leakage has first occurred. The 
new technique developed in this project has the ability to provide an early indication of potential 
CO2 leakage before it occurs. 

Section 2 presents the concept and framework of early leakage detection. The framework 
developed consists of four key components: site characterization for known surface faults and 
abandoned wells, inversion-based early detection of brine leakage, CO2 leakage prediction and 
monitoring, and decision-making for risk management and mitigation. A methodology was 
developed for early detection of potential CO2 leakage from geological storage formations using 
pressure and surface-deformation anomalies. The early detection methodology involves 
automatic inversion of anomalous brine leakage signals with efficient forward pressure and 
surface-deformation modeling tools to estimate the location and permeability of leaky features in 
the caprock. A global sensitivity analysis was conducted to better understand under which 
conditions pressure anomalies can be clearly identified as leakage signals, and evaluate signal 
detectability for a broad parameter range considering different detection limits and levels of data 
noise. The detectability in terms of detection time and detection region for a given leakage 
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scenario (e.g., number, location, and permeability of leaky wells) can help understand the 
applicability of the early leakage detection methodology. 

In Section 3, the inversion methodology for early leakage detection is used to estimate leakage 
parameters (i.e., the location and permeability of the leaky well) in four synthetic examples of 
idealized two-aquifer-and-one aquitard storage systems, with an injection well and a leaky well, 
for different monitoring scenarios. Example 1 assumes knowledge of formation parameters and 
pressure data with no uncertainties and errors. In this case, the inversion methodology produced 
accurate leakage estimates, regardless of whether the detection problem itself is unique or non-
unique depending on the number and configuration of monitoring wells. In a random 
configuration of two monitoring wells, the inversion methodology may need different initial 
guesses to have accurate estimates of the leakage parameters and a best match for pressure data. 
The inversion results were stable after the first half year of injection and monitoring. In Example 
2, which involved two monitoring wells and large pressure data noise, the inversion 
methodology improved the estimation accuracy of the leakage parameters with increasing 
monitoring time and data used in the inversion. The detection accuracy and convergence speed 
with time depend on the configuration of the two monitoring wells. For an optimal configuration, 
an accurate detection can be achieved within the first 2–3 years of monitoring. When the 
formation parameters are uncertain and the pressure data have large noise (Example 3), the 
detection can be improved by simultaneously calibrating the formation parameters and the 
leakage parameters using data of pressure anomalies in the overlying formations as well as the 
storage formation. As shown in Example 4, joint inversion of pressure and surface-deformation 
measurements can significantly improve the speed of convergence toward the true solution of the 
leakage parameters and enable earlier, accurate detection of the location of the leaky well. This 
example demonstrated that high-resolution deformation data can help locate the leakage pathway 
while the pressure data from a limited number of monitoring wells can help estimate the 
permeability of the leaky well or the leakage rate.  

In Section 4, the methodology of early leakage detection is applied to hypothetical leakage 
problems at the Ketzin CO2 pilot site in Germany. These problems are formulated by introducing 
a hypothetical leaky well located 675 m away from the injection well, with varying well 
permeability and leakage rate. Note that this is a purely hypothetical scenario. At Ketzin, no 
signals of leakage of brine and CO2 through the Weser/Amstadt formation from the Stuttgart 
formation to the Exter formation were observed during the CO2 injection over 5 years. The 
monitoring system at the Ketzin site consists of one injection well and two monitoring wells in 
the storage formation, and one monitoring well in the Exter formation. The application 
demonstration includes three components of the framework of the leakage detection system: site 
characterization, model calibration, and leakage detection. Model calibration was conducted to 
estimate large-scale spatial-varying permeability using pressure data observed during the 
pumping tests conducted prior to the CO2 injection test. A forward model was developed using 
TOUGH2/EOS9, and the inverse modeling is conducted using iTOUGH2-PEST. The model 
calibration indicated that the storage formation in the near-well region contains sand channels 
and a low-permeability zone, and the near-well region is located in a semi-closed system with a 
flow barrier located in the north. The calibrated large geologic features are consistent with the 
field monitoring of CO2 injection. For the early leakage detection, the “monitoring” pressure at 
the four wells was obtained by simulating the CO2 injection into the Stuttgart formation with the 
hypothetical leaky well. The forward model was developed for an extended three-dimensional 
(3-D) domain of 15 km by 15 km covering the Stuttgart formation, the Weser/Amstadt 
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formation, and the Exter formation of ~260 m thickness in total, using site-specific data. Using a 
moderate injection rate of 1.59 kg/s for 2 years (i.e., 50,000 tonnes of CO2 per year), the 
detection methodology can accurately estimate the leaky well permeability when the 
permeability is higher than 1,000 darcy, indicating that the methodology is applicable to detect 
large leakage events with high flow rates. If the injection rate increases by a factor of 10 (i.e., a 
half million tonnes CO2 per year), a leakage event in a 10-darcy well can be accurately detected. 
The benefit of early leakage detection via inversion of pressure signals can be seen from the 
difference between the time of successful detection of a pressure anomaly from brine leakage 
(180 days) and the CO2 arrival time (255 days) at the leaky well. If a leakage pathway for CO2 
can be detected in advance, mitigating measures can be undertaken to minimize the leakage 
risks, such as ceasing CO2 injection or pumping CO2 back out of the injection zone. 

The authors of this report realize that the work conducted so far shows promise in that early 
leakage detection via joint inversion has been successful for simplified test cases and a fictitious 
leakage scenario for the Ketzin site. Without prior optimization of monitoring well location, 
detection was achieved in many example cases, but only when the leakage pathways had 
relatively large permeability and clear anomalies could be recorded. Further work is required to 
test the detection framework envisioned in this study, for a larger range of conditions and 
eventually in comparison with data from a field demonstration site in which actual leakage 
signals have been measured.  

Further details of the material presented in this report were studied by Jung et al. (2013) and 
Chen et al. (2013). 
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1. INTRODUCTION 

1.1 RESEARCH BACKGROUD 

The ability to detect carbon dioxide (CO2) leakage is a key component of risk assessment and 
management associated with geologic carbon storage (GCS) (IPCC, 2005; NETL, 2009). 
Injected CO2 may escape from the deep storage formation to shallower groundwater aquifers, 
ultimately to the atmosphere, through abandoned wells that are not properly plugged (Gasda et 
al., 2004; Watson and Bachu, 2008), through permeable or semi-permeable faults that are pre-
existing or injection-induced (Morris et al., 2011; Rutqvist, 2012), or through caprock fractures. 
Current techniques for CO2 leakage detection are based on the physical, geophysical, or/and 
geochemical signatures that are induced by migrating CO2 and that can be observed in the deep 
and shallow subsurface, at the land surface, and in the atmosphere (Benson, 2006; BES, 2007; 
Carroll et al., 2009; Oldenburg et al., 2003) (see Figure 1). For example, seismic reflection 
surveys may detect secondary accumulations of leaked CO2 in overlying formations, 
groundwater sampling and soil gas surveys can be successful in the shallow subsurface 
(Romanak et al., 2012), and Eddy Covariance towers or airborne monitoring techniques can find 
CO2 escaping from the subsurface into the atmosphere (Lewicki and Hilley, 2009; Lewicki et al., 
2009; Strazisar et al., 2009). 

 

 
Figure 1: Example of the existing techniques used to measure geochemical-geophysical-
hydrological subsurface properties and processes (BES, 2007). 
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One of the great challenges in CO2 leakage detection is that many of these techniques have 
relatively low spatial resolution and coverage, in comparison to the footprint of CO2 plumes that 
is on the order of tens of square kilometers for an industrial-scale GCS project (Zhou et al., 2010; 
Zhou and Birkholzer, 2011), and may not be effective in locating and identifying unknown 
leakage pathways that are not identified by near-field site characterization. The other great 
challenge is that all these techniques can only detect anomalous CO2 signals long after CO2 
leakage has first occurred, thus lacking the ability to provide an early indication of potential CO2 
leakage before it occurs. For successful risk management of large-scale GCS, it is desirable to 
develop or devise a monitoring method capable of early detection of unknown leaky pathways.  

Pressure-based detection techniques for CO2 and brine leakage have recently been proposed in 
the community of GCS (Benson et al., 2006; Chabora and Benson, 2008; Nogues et al., 2011; 
Zeidouni et al., 2011; Sun and Nicot, 2012; Sun et al., 2013). The original idea of using pressure 
signals dates back to the 1980s when Javandel et al. (1988) proposed hydrologic detection of 
abandoned wells for hazardous waste disposal. To date, researchers have mainly focused on 
evaluating signal detectability via pressure monitoring in the aquifer overlying the storage 
formation, separated by a caprock formation. For instance, Benson et al. (2006) focused on 
pressure anomalies induced by brine leakage through a leaky abandoned well and a leaky fault, 
and concluded that the pressure-based detection method could be useful for providing early 
warning of large leaks within 1 year after the start of fluid injection. Chabora and Benson (2008) 
investigated the detectability of pressure signals at a monitoring well in the overlying aquifer, 
caused by brine leakage through the monitoring well or CO2 leakage through the injection well. 
Nogues et al. (2011) investigated the spatial probability of being able to detect a leakage event 
using one monitoring well in an overlying aquifer, and determined the average time needed for 
successful detection. Zeidouni et al. (2011) formulated an inverse problem for leakage detection 
and evaluated the 95% confidence intervals of the location and transmissivity of the leaky well 
using up to five monitoring wells in the overlying aquifer. Sun and Nicot (2012) and Sun et al. 
(2013) applied different optimization methods to design optimal observation well placement for 
leakage detection using the pressure signals in the overlying aquifer.  

All studies mentioned above used analytical forward models (Javandel et al., 1988; Avci, 1994; 
Nordbotten et al., 2004) assuming that the caprock was impervious and any pressure changes 
observed in the overlying aquifer were caused by well (or fault) leakage. However, intact 
caprock is usually of low, but not zero, permeability (Hart et al., 2006; Neuzil, 1994), and slow 
“diffuse” migration of brine through the caprock (referred to hereafter as diffuse leakage) may 
induce signals in the overlying aquifer that can be hard to discern from those related to focused 
leakage through leaky wells or faults (Zhou et al., 2010; Zhou and Birkholzer, 2011; Chabora 
and Benson, 2009; Birkholzer et al., 2009; Zhou et al., 2008). In other words, the pressure-
anomaly signals of focused well (or fault) leakage in the overlying aquifer may be 
“contaminated” by diffuse leakage through the caprock or aquitard, in particular when the 
monitoring sensors in the overlying aquifer are not in the vicinity of the leakage location. 
Therefore, the effects of diffuse leakage through the caprock should be considered when 
evaluating early detection methods for focused leakage through leaky pathways (Cihan et al., 
2011; Cihan et al., 2013). 

Another concern about pressure monitoring for leakage detection is that it can be conducted at 
high temporal frequency, but is often limited to a few spatial locations (available only at a very 
small number of wells and gauges). Surface deformation measured by Interferometric Synthetic 



Early Detection of Brine and CO2 Leakage Using Pressure and Surface-Deformation Monitoring Data 

6 

Aperture Radar (InSAR) may be considered as a complementary monitoring tool for detecting 
large leaks. The InSAR technology provides dense spatial information on the scale of kilometers, 
and has been successfully used to assess ground surface deformation induced by earthquakes 
(Massonnet et al., 1993; Massonnet and Feigl, 1998), groundwater pumping and recharge 
(Galloway et al., 1998; Amelung et al., 1999; Bawden et al., 2001; Buckley et al., 2003; 
Hoffmann et al., 2003; Schmidt and Bürgmann, 2003; Bell et al., 2008; Galloway and Hoffmann, 
2007), oil and gas production (Fielding et al., 1998; Xu et al., 2001), geothermal energy 
exploitation (Massonnet et al., 1997), and CO2 injection and storage (Vasco et al., 2008a,b; 
Vasco et al., 2010). At least for large leakage events, it may be expected that the surface 
deformations induced by fluid leakage would show recognizable anomalies that can support 
early leakage detection methods, even at vegetated or urban sites (Amelung et al., 1999; Buckley 
et al., 2003; Schmidt and Bürgmann, 2003). 

1.2 MOTIVATION 

Industrial-scale CO2 injection and storage in deep saline aquifers induce significant pressure 
perturbations that travel much faster in a heterogeneity-smoothing way than the heterogeneity-
manifesting two-phase CO2-brine flow. Pressure-induced phenomena (e.g., ground surface 
deformation) and their anomalous responses to leaking faults, abandoned wells, and other seal 
imperfections can be extremely useful for locating, identifying, and quantifying brine leakage 
pathways, and for providing early warning of potential CO2 leakage.  

The significant pressure buildup in the subsurface and the related detectable surface deformation 
offer an excellent opportunity for detecting and quantifying anomalous signals of resident fluid 
leakage through seal imperfections. These leaky seal imperfections may become, at a later time, 
leakage pathways of slower-migrating CO2 accumulations. The early-detection concept has been 
explicitly identified in the Grand Challenge of Integrated Characterization, Modeling, and 
Monitoring of Geologic Systems in the Basic Research Needs for Geosciences: Facilitating 21th 
Century Energy Systems (BES, 2007, p. 80), as quoted:  

“An important technological advance of integrated characterization and monitoring will 
be the development of systems that can be routinely used to detect and quantify 
phenomena that provide the earliest indication of processes that are unexpected in the 
manipulated system. A particular important example is the development of monitoring 
technology and strategies for early identification and quantification of CO2 leakage, so 
that the hazard can be mitigated or remediated before the overall storage system 
integrity is compromised.” 

1.3 OBJECTIVES 

To complement current CO2 leakage detection techniques, the aim of this study was to develop, 
test, and apply a modeling-based method for an early leakage detection system relying on inverse 
analysis of pressure and, if available, surface deformation data. The concept of early detection of 
large leaks makes use of the fact that pressure signals travel very fast in the subsurface, and 
pressure-driven processes can be detected earlier than CO2 migration processes. The concept of 
early leakage detection is thus to detect pressure-driven brine leakage through leakage pathways 
as early as possible, then use this knowledge to predict CO2 plume migration in the storage 
reservoir and evaluate implications for CO2 leakage, and finally to guide deployment of 
monitoring for improving data and detection, with the ultimate goal of mitigating leakage risks. 
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The framework of early leakage detection consists of four key components: site characterization 
for known surface faults and abandoned wells, early detection of brine leakage, CO2 leakage 
prediction and monitoring, and decision-making for risk management and mitigation.  

An inversion-based methodology was developed for early detection of potential CO2 leakage 
from geological storage formations using pressure and surface-deformation anomalies. The 
methodology development in this report includes automatic inversion of anomalous brine 
leakage signals to estimate the location and permeability of leaky features in the caprock, a 
global sensitivity analysis to better understand under which conditions pressure anomalies can be 
clearly identified as leakage signals, and a detectability analysis for a broad parameter range 
considering different detection limits and levels of data noise in terms of detection time and 
detection region. For demonstration, the methodology of early leakage detection was applied to 
estimate leakage parameters (i.e., the location and permeability of the leaky well) in four 
synthetic examples of idealized two-aquifer-and-one aquitard storage systems, with an injection 
well and a leaky well, for different monitoring scenarios. These examples vary in the number and 
configuration of monitoring wells and in the type and quality of monitoring data. For example, in 
some cases it was assumed no pressure noise and in other cases large data noise was considered, 
inversions were conducted assuming that formation parameters are known without or with 
uncertainty, and only pressure data was used for the inversion or consider availability of both 
pressure and surface-deformation data available for detection. The demonstration indicated that 
early leakage detection can be successful in cases with relatively large leakage events when 
pressure signals are used from both the storage formation and the overlying aquifers. The 
accuracy of leakage detection can be improved by jointly inverting surface-deformation, if 
available, and pressure anomalies. 

Finally, the inversion-based methodology of the early leakage detection was applied to 
hypothetical leakage problems at the Ketzin site in Germany. The problems were formulated by 
introducing a hypothetical leaky well located 675-m away from the injection well, with varying 
well permeability. It is assumed that the position of this well is known (e.g., abandoned well), 
but not whether the well integrity is such that it might act as a leaky pathway. The “monitoring” 
pressure at four wells in both the storage formation and the above zone was simulated for 
hypothetical CO2 injection scenarios using TOUGH2/ECO2N. For the case with a constant CO2 
injection rate of 1.59 kg/s (50,000 tonnes CO2 per year), the current configuration of monitoring 
wells would allow accurate detection of large leaks from the leaky well if the effective 
permeability is 1,000 darcy or higher. When the injection rate was increased to 15.9 kg/s (a half 
million tonnes CO2 per year), the leakage signals became significantly stronger and leaks with a 
leaky well permeability of 10 darcy could be accurately detected. 
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2. DEVELOPMENT OF EARLY LEAKAGE DETECTION METHODOLOGY 

This section presents the concept of early leakage detection with pressure and surface-
deformation monitoring data, and briefly describes the four components of the framework for 
early leakage detection, which together would allow for improved risk assessment and 
mitigation. Details of the inversion modeling methodology are presented with the formulation of 
the detection problem using anomalies of pressure and surface deformation (induced by leakage) 
in comparison to no-leakage cases. The sensitivity and detectability analysis is presented with 
demonstration for an idealized storage formation using semi-analytical solutions for pressure and 
deformation. Note that the demonstration in this section and Section 3 is conducted for an 
idealized CO2 storage system, which allows the use of efficient analytical solutions for single-
phase flow. However, for a real application (Section 4), a numerical modeling of the coupled 
two-phase CO2-brine flow and geomechanics was conducted (see Section 2.3.3). 

2.1 CONCEPT OF EARLY LEAKAGE DETECTION  

Figure 2 shows schematically a typical storage system with CO2 injection through an injection 
well into a deep saline formation for storage of CO2 (target reservoir), situated below a sequence 
of overlying near-impermeable aquitards and permeable aquifers (above-zone reservoir). 
Consistent with the idea of using pressure-based detection techniques, monitoring of pressure (in 
addition to temperature, CO2 saturation, and fluid compositions) was envisioned at both the 
injection well and monitoring wells in the storage formation and overlying aquifers, and possibly 
InSAR monitoring of deformation at the ground surface. This study assumed that the site 
integrity is challenged by the presence of a permeable, hidden fault and a leaky well, through 
which resident brine or injected CO2 could escape from the storage formation. For such a storage 
system, the objective of early leakage detection would be to locate, identify, and quantify 
initially unknown leakage pathways (e.g., leaky faults, fractures, abandoned wells) using the 
signals of fast-propagating pressure perturbation and surface-deformation anomalies caused by 
brine leakage. If successful, this would provide early warning of potential CO2 leakage, and risk 
management can be initiated to avoid CO2 leakage. Risk management would likely start with 
simulating CO2 migration to predict the timing and magnitude of CO2 leakage through these 
pathways, which could then lead to deploying mitigation measures for leakage prevention as well 
as additional monitoring at the potential leakage locations. 

Whether unknown leakage pathways can be located and characterized via analysis of pressure 
and surface-deformation data will largely depend on (1) the detectability of the leakage signals, 
and (2) the effectiveness and accuracy of the inverse modeling methodology. Detectability is a 
function of strength of signal anomalies relative to data noise and model uncertainties, and signal 
strength depends on the magnitude of the leak and the properties of the storage formation and the 
overlying units. With respect to signal strength, industrial-size CO2 injection is expected to 
generate strong and large-scale pressure perturbations. For example, the maximum pressure 
changes measured at the In Salah site in Algeria are as high as 100 bar (Rinaldi and Rutqvist, 
2013), and the pressure buildup simulated for a hypothetical full-scale deployment scenario in 
the Illinois Basin exceeds 25 bar within a 120 km × 100 km region in the center of the basin 
(Zhou et al., 2010; Zhou and Birkholzer, 2011; Birkholzer and Zhou, 2009). If leakage pathways 
exist, such pressure increases in the storage reservoirs may lead to substantial brine migration 
into the overlying aquifer. The concept of above-zone pressure monitoring relies on the 
assumption that the resulting anomalous pressure signals in the overlying aquifer would be 
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clearly identifiable compared to pressure perturbations caused by other sources, such as those 
due to natural pressure fluctuations or the pressure changes resulting from diffuse leakage 
through the caprock. That is, the configuration of the pressure sensors (i.e., distance to leakage 
locations) may also be an important factor affecting detectability. Note that this project is not 
about optimization of sensor configuration; rather it assumed that the monitoring well setup and 
sensor configuration was given and that for this given scenario leakage detection via inverse 
modeling of pressure anomalies needs to be conducted.  

 

 
Figure 2: Schematic of a typical storage system with CO2 injection through an injection well 
into a deep storage formation, pressure monitoring at gauges and sensors (orange symbols) 
in the storage formation and overlying permeable aquifers, and InSAR monitoring of 
ground-surface deformation, and with a permeable leaky fault and a leaky well that may act 
as leaky pathways of resident brine or injected CO2. 

 

A large-scale CO2 storage project is also expected to induce noticeable surface deformation. 
Advanced InSAR techniques, which can capture surface deformation as small as 1 mm with a 
pixel resolution of 10 m × 10 m, have been successfully used to track transient surface 
deformations of up to 18 mm induced by injecting 4.3 million metric tonnes (Mt) of CO2 at the 
In Salah CO2 storage site in Algeria (Vasco et al., 2008a,b). The shape of the InSAR surface-
deformation images also revealed the dynamic opening of a fracture or fault zone caused by high 
pressure buildup (Morris et al., 2011; Vasco et al., 2010; Rinaldi and Rutqvist, 2013). It may thus 
expect that InSAR monitoring can help capture localized surface deformations (i.e., anomalies) 
induced by fluid flow through seal imperfections (e.g., leaky faults, fracture zones, and clusters 
of abandoned wells). 
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Figure 3 was used to visualize the concept of early leakage detection using leakage-induced 
anomalies in pressure monitoring data, and to show the pressure evolution at a monitoring well 
in the storage formation and in the overlying aquifer as an example for leakage-relevant 
monitoring data. The red line represents the “measured” data at the monitoring sensors affected 
by a distant unknown leakage pathway, while the blue line indicates the “expected” pressure 
evolution at the same sensors using a pre-calibrated forward model for a case without a leaky 
pathway. Note that the shaded band following the red line indicates possible data noise stemming 
from instrument errors or natural fluctuations, and that the one following the blue line illustrates 
a range of uncertainty associated with the forward model. In both cases, the pressure increases in 
the storage formation were expected to be rapid and strong, and those in the overlying aquifer to 
be delayed and much more moderate. The difference between the red and the blue line is the 
pressure anomaly due to leakage; this difference is what was hoped to identify and use for the 
detection of an unknown leaky pathway.  

 

 
Figure 3: Schematic of pressure evolution at a monitoring well in the storage formation and 
the overlying aquifer: measured pressure change (with noise) in the red line and expected 
pressure change (with uncertainty range) in the blue line. 

 

For the CO2 storage system with pressure monitoring data as shown in Figure 3, if the 
“expected” behavior is substantially different from the “measured” pressure response, the study 
will need to account for the possibility of leakage pathways in the forward model. An inversion 
problem will then be defined in which the forward model with leakage pathways is used to 
minimize the difference between “measured” and “expected” behavior. However, a certain range 
of uncertainty associated with the forward predictions cannot be avoided because no forward 
model can account for all real-world phenomena. Even if the forward model reasonably captures 
the major mechanisms controlling the system responses, the calibration of model parameters is 
often not fully site-specific and has to rely on best guesses based on the available literature or 
past experiences. This uncertainty in the forward model parameters can make the detection of 
leakage anomalies more difficult. This study postulates that this is particularly true for the 
pressure measurements in the storage formation, where the leakage signals are relatively subtle 
compared to the overall pressure changes and may be just within the uncertainty range of the 
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forward predictions. Relative to the total pressure change induced by CO2 sequestration, the 
leakage signal is qualitatively stronger in the overlying formation (where the expected pressure 
change without focused leakage should be slow and small) than in the storage formation. An 
important prerequisite for early leakage detection is thus that prediction of the expected system 
behavior needs to be conducted with as little uncertainty as possible. This requires detailed site 
characterization as well as thorough model calibration using all monitoring data available at a 
CO2 storage site, such as CO2 saturation, temperature, and geochemical changes (in addition to 
pressure perturbation and surface-deformation data), before and during CO2 injection. Using the 
carefully calibrated forward model that provides the “expected” behavior of the storage system 
in the absence of leaky pathways, this study may be able to identify leakage anomalies and 
define an inversion problem to search for leaky pathways. Because leakage-induced anomalies 
are expected to become stronger as injection progresses, the estimation of leaky pathways should 
become increasingly reliable with incrementally more monitoring data available with time.  

2.2 FRAMEWORK OF EARLY LEAKAGE DETECTION 

Figure 4 shows the framework of the system of early leakage detection in support of the real-
time operation and decision-making of a GCS project with risk management. This framework 
includes: (1) site characterization for known faults and abandoned wells; (2) early detection of 
brine leakage through hydro-mechanical joint inversion of pressure and deformation monitoring 
data; (3) CO2 leakage prediction through CO2-brine flow modeling, monitoring, and model 
calibration; and (4) decision-making on risk management and mitigation. Monitoring of the 
pressure-based phenomena (e.g., pressure perturbations and ground-surface deformation) and 
their anomalous responses to leaking faults, abandoned wells, and other seal imperfections may 
help locate, identify, and quantify these leaky pathways and provide early warning of potential 
leakage of CO2 through these leaky pathways. The timing and flow rate of a CO2 leakage event 
not only depend on the characteristics (e.g., geometry and permeability) of the detected leaky 
pathways, but also depend on the migration and trapping of CO2 in the naturally heterogeneous 
storage formation, as well as the rock properties of the storage formation near the leaky 
pathways. This discussion is focused on: (1) monitoring of pressure and surface deformation, (2) 
detection of brine leakage through leaky pathways, (3) prediction of CO2 leakage through model 
calibration, and (4) risk management and benefits of early leakage detection. 

2.2.1 Monitoring of Pressure and Surface Deformation 

The first component of the early-leakage-detection system is the monitoring of pressure 
perturbations at injection and monitoring wells and the InSAR monitoring of ground-surface 
deformation. As shown in Figure 2, the pressure monitoring may be conducted in the storage 
formation and the overlying permeable aquifers using pressure sensors. Automatic pressure 
monitoring can be conducted at high frequency (e.g., one data point every ~10 seconds), which 
for further analysis is often compressed to hourly or daily pressure data. The maximum pressure 
changes monitored ranged from 2.1 bar at the Frio I pilot site in Texas to as high as 100 bar at 
the In Salah site with industrial-scale CO2 storage (Doughty et al., 2008; Rinaldi and Rutqvist, 
2013). In a full-scale deployment scenario in which enough CO2 is captured and stored to make 
relevant contributions to global climate change mitigation, the volumetric rates and cumulative 
volumes of CO2 injection would be comparable to or higher than those related to existing deep-
subsurface injection and extraction activities, such as oil production. In this scenario, the scale 
and magnitude of pressure buildup will be unprecedented (Zhou and Birkholzer, 2011). For 
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example, the simulated pressure buildup for a full-scale deployment scenario in the Illinois Basin 
is over 25 bar for a region of 120 km × 100 km (Birkholzer and Zhou, 2009; Zhou et al., 2010; 
Zhou and Birkholzer, 2011). The high pressure buildup over a large area may drive resident 
brine to leak from the storage formation via high-permeability leaky pathways, inducing 
anomalous pressure signals at monitoring wells. These anomalous pressure signals may be easily 
distinguished because the deep saline aquifers are not exposed to other significant perturbations 
and background pressure fluctuations are relatively small.  

 

 
Figure 4: Flow chart of the early leakage detection system, showing the integration of site 
characterization, monitoring, and forward and inverse modeling, and the system 
components of (1) early detection of brine leakage, (2) CO2 leakage prediction and 
monitoring, and (3) decision-making for risk management and mitigation. 

 

If available, the high-frequency pressure monitoring at wells may be complemented by high-
spatial-resolution InSAR surface-deformation monitoring. Advanced InSAR techniques can 
capture surface deformation as small as 1 mm with a pixel resolution of 10 m × 10 m over 100 
km × 100 km for a track. For example, the InSAR monitoring techniques have been successfully 
used to track the transient surface deformation induced by injecting 4.3 million metric tonnes 
(Mt) of CO2 over 7 years through three horizontal wells into a low-permeability sandstone 
formation at the In Salah site in Algeria (Vasco et al., 2008a,b). The surface deformation induced 
by injecting 1.13 Mt CO2 at an injection well ranged from 2 mm to 18 mm in a region of 7 km × 
11 km. In addition, the InSAR monitoring data at the In Salah site also revealed the dynamic 
opening of a fracture or fault zone induced by very high pressure buildup (Vasco et al., 2010; 
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Morris et al., 2011; Rinaldi and Rutqvist, 2013). Further InSAR applications to other GCS sites 
are expected from its extensive applications to subsidence or uplift induced by earthquakes 
(Massonnet et al., 1993; Massonnet and Feigl, 1998), groundwater pumping and recharge 
(Galloway et al., 1998; Amelung et al., 1999; Bawden et al., 2001; Hoffmann et al., 2001, 2003; 
Buckley et al., 2003; Schmidt and Bürgmann, 2003; Bell et al., 2008; Galloway and Hoffmann, 
2007), oil and gas production (Fielding et al., 1998; Xu et al., 2001), and geothermal energy 
exploitation (Massonnet et al., 1997). The signature of mapped surface faults on the large-scale 
surface deformation has been clearly revealed in InSAR interferograms (e.g., Amelung et al., 
1999; Bawden et al., 2001; Buckley et al., 2003; Schmidt and Bürgmann, 2003). These revealed 
faults may act as flow barriers and cause a cross-fault difference in pressure and surface 
deformation. This research found there are no reported detections of fluid leakage through wells 
and faults using InSAR interferograms in the literature. However, through the dynamic changes 
in GCS-induced deformation and fault-opening-induced deformation at the In Salah site, it is 
expected that InSAR monitoring can help capture localized surface deformations (i.e., 
anomalies) induced by fluid flow through seal imperfections (e.g., leaky faults, fracture zones, 
and clusters of abandoned wells) from the deep saline storage formation to shallow formations. 
Therefore, the high spatial resolution and large spatial coverage of InSAR monitoring can greatly 
improve the capability of the early-leakage-detection system in the presence of leaky structures. 

2.2.2 Detection of Brine Leakage through Leaky Pathways 

The time-dependent pressure and surface-deformation data can be used to detect brine leakage 
through leaky pathways. These pathways may not be in the vicinity of injection wells, because 
site characterization and small-scale pumping/injection tests are usually conducted to assure the 
near-field integrity of the storage formation. It may take some time for pressure buildup and 
surface deformation signals to propagate to these structures, and additional time for the 
monitoring data to show sufficiently strong anomalies induced by brine leakage through these 
structures to overlying/underlying aquifers. All these monitoring data can be used to calibrate the 
coupled hydro-mechanical model for a site-specific project. With time, the monitoring data show 
stronger signal anomalies, and the calibrated model can be further used to detect these leaky 
pathways using monitored pressure and deformation and their anomalies. The leakage detection 
objective is to estimate the location of the leaky pathways and their hydro-mechanical properties, 
such as well/fault permeability. The detection may reveal multiple leaky pathways at different 
times (e.g., T1(i), i = 1, nf in Figure 4, where nf is the number of leaky pathways). Note that the 
detection is based on the fast-propagating pressure and surface-deformation waves, and the brine 
leakage is used to detect the leaky pathways. With time, as more monitoring data become 
available, the detected locations and estimated permeability of the leaky pathways can be further 
refined with less uncertainties, and may converge to their true solutions. 

2.2.3 Prediction of CO2 Leakage through Model Calibration 

The time-dependent risks of CO2 leakage can be (1) predicted using multiphase flow and 
multicomponent transport modeling, and (2) monitored by conventional CO2-based monitoring 
techniques (e.g., geophysical imaging). The modeling is conducted to simulate the migration and 
trapping of injected CO2 in the form of free phase and dissolved CO2. The monitoring of 
pressure, temperature, CO2 saturation, and the arrival time of CO2 plume to monitoring wells, as 
well as geophysical monitoring data, can be used to calibrate the two-phase CO2-brine flow 
model (e.g., Doughty et al., 2008; Commer et al., 2014; Doetsch et al., 2013). The model 
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calibration can help gain confidence on the modeling results on CO2 migration. The calibrated 
model can be also used to predict with confidence the arrival times of CO2 to the leaky pathways 
detected by monitoring of brine leakage in Section 2.2.2. More importantly, the calibrated model 
can be used to plan whether and at which time injection should stop in order to keep the risk of 
CO2 leakage below a certain level. One relevant task is to estimate the injection stop time for 
which there is no CO2 leakage through the detected leaky pathways because of the trapping of 
CO2 within the storage formation, referred to as T2 in Figure 5. Note that the calibrated model 
should be further refined as additional monitoring data become available, and the estimates for 
injection stop time should be updated, with less uncertainty in its prediction. 

 

 
Figure 5: Time-dependent risk of CO2 leakage associated with different decision-making 
scenarios based on (1) the detailed site characterization (i.e., injection stop at T4), (2) the 
conventional CO2-based detection techniques (i.e., injection stop at T3), and (3) the proposed 
early leakage detection system (i.e., injection stop at T2, with no or little risk of CO2 leakage). 

 

2.2.4 Risk Management and Benefits of Early Leakage Detection 

If leaky pathways are present within the future extent of the CO2 plume, the entire system of 
early leakage detection is important as shown in the decision-making component for risk 
management and mitigation (see Figure 4). The benefits of this system can be understood 
through Figure 5 by comparing the different risk of CO2 leakage for the decision-making 
scenarios based on: (1) the detailed site characterization alone, (2) the combined site 
characterization and conventional CO2-based monitoring and detection, and (3) the early leakage 
detection system. Without any monitoring in place, CO2 injection would stop only when the 
planned project duration has ended, leading to the highest risk of CO2 leakage. With 
conventional CO2-based detection and modeling in place, it may take a considerable amount of 
time to locate and identify the leaky features after CO2 leakage occurs. Operators would stop 
CO2 injection at time T3, and would take certain mitigation measures. However, the leakage risk 
may increase further for a while after injection stops because mobile free-phase CO2 continues to 
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migrate to the detected leaky pathways. With the early leakage detection system in place, and 
with a good basis for risk management and mitigation planning, operators may be able to 
continue CO2 injection until T2 without any risk of CO2 leakage, or until sometime between T2 
and T3 if an insignificant amount CO2 leakage is tolerable. That CO2 leakage is indeed 
insignificant could be demonstrated with tailored CO2-based monitoring based on the early 
detection of leaky features, and the monitoring data can then be used for model verification. The 
benefit of the early detection system is: (1) that the period between the time of hydro-mechanical 
detection of leaky seal imperfections (T1) is much shorter than with conventional monitoring 
techniques, and (2) that therefore the risk of significant and lasting CO2 leakage is reduced 
considerably. Note that it is assumed that detailed site-characterization can assure no leaky 
features are located near injection wells, so that no CO2 leakage risk is shown until detection 
time T2. 

2.3 INVERSION MODELING METHODOLOGY 

An efficient inverse modeling methodology was developed for early leakage detection using 
pressure and deformation monitoring data (Section 2.3.1). Predictions of pressure and surface 
deformation were obtained either through a fast semi-analytical solution described in Section 
2.3.2 for methodology demonstration, or through numerical modeling of coupled two-phase flow 
and geomechanics described in Section 2.3.3 for real applications. The new methodology was 
applied to four synthetic examples in Section 3 and one real application in Section 4.  

2.3.1 Inverse Modeling for Early Leakage Detection 

The objective of the early leakage detection via inverse modeling is to locate the leaky pathway 
(i.e., determine the coordinate of a leaky well) and to calibrate the leaky well permeability. A 
large-scale CO2 injection project may cause pressure changes exceeding tens of bars in the 
storage formation, and may induce surface deformations as high as a few centimeters. In an 
effort to calibrate formation parameters via inverse models, one would directly use these pressure 
or surface-deformation monitoring data which reflect the absolute changes from the initial site 
conditions. However, for the formulation of the leakage inverse problem, it may be more 
valuable to invert for pressure and deformation anomalies. These anomalies are obtained by 
calculating the difference (i.e., anomaly) between the “monitored” system response (induced by 
both injection and leakage) and the “expected” system response (induced by injection only). That 
is, for a leakage scenario with a leaky well, the pressure anomaly is defined as the difference 
between a case with well leakage and a case without well leakage (= wowwow hhh  ). The 

deformation anomaly is defined as the difference of deformation on the ground surface between 
a case with well leakage and a case without well leakage (= wowwow bbb  ). Using anomalies 

rather than absolute values may ensure that the leakage signals are more clearly brought out in 
the inversion process. Particularly in the case of the pressure data, pressure anomalies in the 
storage formation become of similar magnitude to those in the overlying aquifer, which may help 
improving the inverse problem solution. 

The inverse modeling, as well as the sensitivity analysis described in the Section 2.4.2, was 
conducted with iTOUGH2-PEST (Finsterle, 2011; Fisterle and Zhang, 2011). iTOUGH2 is a 
computer program for parameter estimation, sensitivity analysis, and uncertainty propagation 
analysis (Finsterle, 2005, 2007), and developed for use with the TOUGH2 forward simulator for 
nonisothermal multiphase flow in porous and fractured media (Pruess et al., 1999). While 
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iTOUGH2-PEST inherits all the capabilities of iTOUGH2, it utilizes the PEST protocol 
(Doherty, 2007a,b) as a way to communicate with any generic forward model (e.g., the analytical 
pressure and deformation models described in Section 2.2.2), and therefore can be used as a 
model-independent parameter estimation, sensitivity, and uncertainty propagation code. For the 
estimation of the location and permeability of a leaky well, iTOUGH2-PEST seeks to minimize 
the misfit between the “monitored” and the “expected” system responses (i.e., pressure and 
surface-deformation anomalies) at selected calibration points in space and time:  
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variance of the observations, whose inverse acts as a weight factor for each data type. The 
calibration points included the pressure anomalies available at all pressure gauges installed in the 
monitoring wells and the surface-deformation anomalies available within the spatial extent of the 
storage system. The objective function was minimized by iteratively adjusting the location and 
permeability of the leaky well. The Levenberg-Marquardt method, which is based on the 
calculation of the second-order derivatives of the function, was used to find the minimum of the 
objective function (Levenberg, 1944; Marquardt, 1963). It should be noted that iTOUGH2 
provides a number of other objective functions and minimization algorithms in addition to the 
ones used in this study. 

2.3.2 Efficient Forward Modeling of Pressure Buildup and Surface Deformation 

For methodology demonstration, this study was interested in efficient predictive tools for 
simulating transient pressure buildup in multiple formations and the associated surface 
deformations in response to large-scale CO2 injection and storage. During the early stage of brine 
leakage (before the arrival of CO2 plume at leaky wells), the brine flow and pressure changes 
outside of the CO2 plume can be described with reasonable accuracy by analytical or numerical 
models for single-phase flow (Cihan et al., 2013; Nicot, 2008), thus significantly reducing the 
computational cost compared to more complex multiphase process models typically used for risk 
assessment and management of a GCS site. Similarly, the calculation of surface deformation 
does not require high-resolution CO2 plume modeling at early times after the start of CO2 
injection. In some of the examples described in this report, a semi-analytical solution was used 
by Cihan et al. (2011) to calculate pressure changes induced by well injection and leakage in an 
idealized multilayered aquifer-aquitard system. Surface deformations were subsequently 
estimated based on the simulated pressure changes using the semi-analytical solution and the 
geomechanical properties of each aquifer and aquitard. The semi-analytical solution allows for 
multiple injection/pumping wells into/from aquifers and accounts for both diffuse leakage 
through aquitards and focused leakage through multiple leaky wells. Each aquifer/aquitard is 
homogeneous and isotropic with uniform thickness and infinite extent. Different layers may have 
different geometric and hydrogeological parameters. Flow in the aquifers was assumed to be 
horizontal and flow in the aquitards is assumed to be vertical.  
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Based on the pressure changes, the surface deformation is approximated by adding the vertical 
volumetric change in each formation from the impervious bottom boundary to the ground 
surface. For a homogeneous and laterally infinite aquifer, the vertical volumetric change at a 
given location can be calculated as (Fjær et al., 2008): 
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where b is the vertical expansion of the aquifer, B is the thickness of the aquifer, α is Biot’s 
coefficient, v is Poisson’s ratio, E is Young’s modulus, and P  is the change in aquifer pressure. 
For a semi-pervious aquitard, the total vertical change can be calculated similarly by integrating 
the pressure changes along the vertical direction. The simplifying assumptions made in this 
calculation are that: (1) the formation deformation occurs only in the vertical direction, with 
negligible lateral deformation and without accounting for formation stiffness; (2) the vertical 
volumetric deformation in each formation is independent of the deformation in overlying or 
underlying formations; and (3) the effective stress varies as a function of pressure changes, 
without any change in the total stress from in situ conditions. It has been shown that this 
approximate method is sufficient to provide a reasonable estimate of a few-centimeter uplift 
observed at the In Salah CO2 injection site (Rutqvist, 2012). 

The semi-analytical solutions for pressure and surface deformation were used for an idealized 
storage system (Figure 6) for demonstrating sensitivity and detectability analysis (Section 2.3) 
and early leakage detection (Section 3). 

2.3.3 Numerical Modeling of Pressure Buildup and Surface Deformation 

In a real-world application of the early leakage detection method (Section 3), the multi-phase 
simulator TOUGH2-MP/ECO2N (Pruess et al., 1999; Pruess, 2005; Zhang et al., 2008) was used 
to simulate pressure perturbation and CO2 saturation in response to both injection and leakage. 
When surface deformation data were available and used in the early leakage detection, the 
coupled hydro-mechanical simulator, TOUGH2-CSM, was used to simulate pressure 
perturbation, CO2 saturation, and surface deformation. This simulator was developed by 
Colorado School of Mines (CSM) to extend the TOUGH2-MP simulator to model coupled 
hydro-mechanical (HM) processes and deformation (Winterfeld and Wu, 2011). In the fully 
coupled model, the pressure and saturation for CO2-brine multiphase flow and the mean normal 
stress for geomechanical process were solved simultaneously for each numerical gridblock at 
every time. 

2.4 SENSITIVITY AND DETECTABILITY ANALYSIS 

In this first synthetic example, a sensitivity and detectability analysis was conducted for pressure 
monitoring data. The model system consisted of a target storage formation bounded by an 
impervious boundary at the bottom, the caprock of a semi-pervious aquitard, and an overlying 
aquifer bounded by an impervious boundary at the top. Fluid injection occurred through an 
injection well into the storage formation, and resident brine leaks through a distant leaky well 
into the overlying aquifer, a result of the hydraulic gradient caused by pressure increase in the 
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storage formation. Pressure was monitored in both the storage formation and the overlying 
aquifer at the injection and monitoring wells.  

2.4.1 Model Setup and Forward Modeling 

The injection well is located at the center of the model domain [0 km, 0 km], and the leaky well 
is located 2 km away from the injection well [2 km, 0 km] (see Figure 6b). Since a single-phase 
model is used for forward predictions, CO2 injection is represented in this example by injection 
of an equal volume of brine. An industrial-scale CO2 storage operation was assumed, which 
injects into the storage formation at a constant volumetric rate, Q = 5,700 m3 d−1. The time 
period of interest is 10 years after the start of injection. The radius of the injection and the leaky 
well is 0.15 m, and the leaky well permeability in the base case is Lk = 2 × 10-7 m2. The 
geometric parameters and rock properties of the storage formation, the overlying aquifer, and the 
caprock in the base case are shown in Table 1. Note that the hydraulic conductivity for the two 
aquifers in Table 1 is equivalent to a permeability k = 2 × 10−13 m2, assuming brine density of ρ = 
1,075 kg m-3, gravity acceleration of g = 9.8 m s-2, and water viscosity of μ = 0.9 × 10-2 Pa·s. The 
hydraulic conductivity of the aquitard is equivalent to a permeability k = 2 × 10−19 m2. The 
specific storativity value for the aquifers corresponds to an aquifer pore compressibility of βp = 
4.5 × 10−10 Pa−1 and a porosity of 0.2, while the specific storativity value of the caprock 
corresponds to a pore compressibility of β´p = 9.0 × 10−10 Pa−1 and a porosity of 0.1. All 
parameters are assumed to be homogeneous in the laterally infinite formations of uniform 
thickness, and the hydraulic conductivity (or permeability) is isotropic. The selection of 
formation properties is based on previous studies on large-scale storage of CO2 (Birkholzer et al., 
2009; Birkholzer et al., 2012; Zhou et al., 2009). 

For now, it is assumed at this point that a “perfect” pre-calibrated forward model is available for 
predicting the CO2 storage system behavior without leaky pathways. The term “perfect” here 
refers to a model that can predict without any error or uncertainty the “expected” behavior of the 
storage system in the absence of leaky pathways. That is, the formation parameters are known 
through site characterization and model calibration, and the inversion parameters to be calibrated 
are the location and effective properties of leaky pathways. The focus of this study is on testing 
the inversion method and its detection performance for different monitoring configurations, 
different formation and leakage characteristics, and different levels of data noise at different 
times during CO2 injection.  

2.4.2 Parameter Sensitivity  

This study is interested in understanding the sensitivity of leakage signals to the input model 
parameters given in Table 1. A global sensitivity analysis was conducted to determine the 
parameters that have the most significant impact on pressure anomalies for a variety of 
conditions. A global sensitivity analysis assesses the response of the model output to changes in 
the model parameters varied over given parameter ranges. As shown in Table 1, parameter 
ranges were selected that are quite wide, with the intention of evaluating sensitivity over a 
variety of representative storage site characteristics (in contrast to assessing local sensitivity for 
one site with uncertain parameters). For example, the aquifer hydraulic conductivity varies by 
two orders of magnitude, the aquifer specific storativity varies by a factor of five, and the aquifer 
thickness varies between 30 m and 120 m. In total, ten model parameters were selected to be 
included in the global sensitivity analysis. In addition to the aquifer parameters stated above, the 
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respective properties of the aquitard and the leaky well permeability were varied. For the leaky 
well permeability, a range from 2 × 10-11 m2 to 2 × 10-5 m2 was considered. The upper bound of 
the range represents a very conservative leakage case with substantial leakage potential and 
impact, perhaps representative of an open borehole or a well in which typical abandonment 
methods either have not been implemented or have completely failed. The lower bound is within 
the upper range of leaky well permeabilities discussed in previous studies (Cihan et al., 2013; 
Celia et al., 2011), where leakage pathways along wells considered flow paths along the rock-
cement interface, along the casing-cement interface, and through fractures or cracks within the 
cement or the surrounding rock. As the model output, the pressure anomalies wowh   were 

evaluated in the storage formation and the overlying aquifer at three monitoring-well locations: 
MW1, MW2, and MW3, which are at [1.5 km, 0 km], [4 km, 0 km], and [-2 km, 0 km] and are 
0.5, 2.0, and 4.0 km away from the leaky well, respectively (see Figure 6b). 

 

Table 1: The base-case, minimum, and maximum values of geometric and hydrogeologic 
parameters of the storage formation (SF), the aquitard, and the overlying aquifer (OA) 

Parameters* Variable Base Case Min Max 

Thickness of SF (m)  B1 60 30 120 

Thickness of OA (m)  B2 60 30 120 

Hydraulic conductivity of SF (m d-1)  K1 0.2 0.02 2.0 

Hydraulic conductivity of OA(m d-1)  K2 0.2 0.02 2.0 

Specific storativity of SF(1/m)  S1 1.88E-6 1.00E-6 5.00E-6 

Specific storativity of OA(1/m)  S2 1.88E-6 1.00E-6 5.00E-6 

Thickness of aquitard (m)  B´ 100 50 200 

Hydraulic conductivity of aquitard (m d-1)  K´ 2.0E-7 2.0E-8 2.0E-6 

Specific storativity of aquitard (1/m)  S´ 1.47E-6 1.00E-6 5.00E-6 

Leaky well permeability (m2) kL 2.0E-7 2.0E-11 2.0E-5 

 

The global sensitivity analysis was conducted using the elementary effects method (Morris, 
1991; Saltelli et al., 2008). This method is widely used to screen parameters in models of large 
dimensionality, and its application does not rely on strict assumptions about the model behavior, 
such as linearity, additivity, and monotonicity of the model input-output relationship. The 
elementary elements method consists of r times of global sampling of all k model parameters 
within their defined ranges of possible values and calculation of elementary effects for the 
parameters at the jth global sampling (j = 1, ..., r). The elementary effect (EE) of a model 
parameter is defined as the difference of the model output of interest caused by the local change 
in the respective parameter. For efficient sampling, instead of independently sampling a pair of 
points for each parameter, a total of 2rk, (k+1) points are sequentially selected within the 
parameter space by changing the value of one parameter at a time in a random order, building a 
trajectory of (k+1) points, for a total of r(k+1) sample points. The base point at each global 
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sampling j is randomly sampled within the range of each model parameter. From the distribution 
of EE obtained by a sufficient number r of global sampling, the elementary effects method 
provides both mean and standard deviation as two sensitivity measures for each model 
parameter. The mean value assesses the overall influence of a model parameter on the model 
output, while the standard deviation describes non-linear effects and interactions with other 
model parameters. In the example study, 100 global samples were used to calculate the EE 
values in each of the six cases of monitoring locations and aquifers, and the mean and the 
standard deviation were calculated as a function of injection time. The number of the global 
samplings was determined so that reasonable convergence of the mean EE could be achieved. 

Figure 6 shows the temporal changes of the mean EE values of the pressure anomaly wowh   at 

three monitoring-well locations (MW1, MW2, and MW3) for five model parameters: hydraulic 
conductivity (K1) and thickness (B1) of the storage formation, hydraulic conductivity (K2) and 
thickness (B2) of the overlying aquifer, and the leaky well permeability ( Lk ). The mean EE 

values for the other five parameters are not shown because their influences on wowh   are 

relatively less significant. At MW1, the mean EE values for B2 and K2 are positive in the storage 
formation, but negative for B1 and K1. For a given constant injection rate, an increase in B1 and 
K1 will reduce the leakage rate and cumulative leakage volume through the leaky well since the 
driving force (pressure buildup in the storage formation at the leaky well) becomes smaller, 
resulting in negative mean EE values. When B2 and K2 increase, the resistivity of the overlying 
formation to impede well leakage becomes smaller, which lowers the pressure buildup in the 
overlying formation and thus leads to an increase in leakage rate and volume. Regardless of the 
sign of the mean EE values, their absolute magnitude consistently increases with time, 
suggesting that signal detectability should improve as injection continues. At a given time, the 
sensitivity of wowh   to the model parameters decreases with the increase of distance between the 

monitoring well and the leaky well (from MW1 to MW3). For example, at 5 years, the EE values 
of K2 and B2 for the storage formation change from 1.0 and 0.4 at MW1, to 0.5 and 0.2 at MW2, 
and to 0.3 and 0.1 at MW3. 

Among the four formation parameters, K1 is the most influential parameter affecting pressure 
signals in the storage formation, while B1 is the next most influential model parameter (see 
Figures 6a-c). In the overlying aquifer (see Figures 6d-f), all four formation parameters have 
negative mean EE values, and the two most influential parameters are K2 and K1. Interestingly, 
the leaky well permeability Lk  has a considerable influence on the pressure anomalies, but it is 
not the most sensitive parameter. In the storage formation, the pressure anomalies are less 
sensitive to Lk  than to K1 and B1 over the entire time of injection, and to K2 during the later time 

of injection. In the overlying aquifer, Lk  is always less influential than all formation parameters. 
This suggests that accurate knowledge of the formation parameters will be critical to the success 
of well leakage detection. Note that the EE values of Lk  are positive at all the tested locations, 
increase with time in both the storage formation and the overlying aquifer, and decrease with 
distance from the leaky well. Although the EE values for the storage formation are slightly 
higher than those for the overlying formation, their differences are not significant. This indicates 
that monitoring of pressure anomalies in both aquifers may be important for well leakage 
detection.  
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Figure 6: Transient mean elementary effect (EE) of the pressure anomaly in both the storage 
formation and the overlying aquifer at three different monitoring-well locations (MW1, 
MW2, and MW3).  

 

2.4.3 Analysis of Detectability of Pressure Anomalies  

Detectability analysis addresses the question whether and under which conditions leakage signals 
are sufficiently anomalous to be observable. In particular, this study was interested in 
determining the detection time TD (the start time that the leakage signal at an observation point 
becomes larger than the detection limit) and the detection region (the area around a leaky well 
where the leakage signal at a given time becomes larger than the detection limit). That is, the 
detectability analysis aims to answer the following questions: (1) whether it is possible to detect 
leakage signals at available observation points, in consideration of measurements errors and 
detection limits; (2) what the detection time is and how the leakage signals at an observation 
point evolve with time; (3) how the detection region evolves with time; and (4) how the detection 
time and region are affected by variations in formation parameters and leaky well permeability 
and location. Based on the instrument measurement errors for pressure sensors and natural 
pressure variability expected in deep formations (Benson, 2006), a pressure anomaly detection 
limit of 0.1 bar was selected. For surface-deformation anomaly, a detection limit of 1 mm was 
selected assuming that currently available InSAR technology was applied.  

Figure 7 shows the leakage-induced pressure anomalies wowh   in the overlying formation as a 

function of time, for five monitoring well locations that are, respectively, 0.1, 0.5, 1, 2, and 5 km 
away from the leaky well. With focus on the most sensitive parameter identified in the sensitivity 
analysis, detectability analysis was conducted for three different values of the hydraulic 
conductivity of the storage formation (K1= 0.02, 0.2, and 2.0 m d-1). Since the leaky well 
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permeability is unknown before well leakage detection but has a significant impact on the 
pressure anomalies, detectability was also evaluated for two different values of the leaky well 
permeability. All other parameters are the base-case values given in Table 1. As expected, the 
strength of the well-leakage signals depends on the distance of an observation point from the 
leaky well and on the hydraulic conductivity of the storage formation (see Figure 7). All wowh   

values increase with injection time. 

 

 

Figure 7: Leakage-induced pressure anomaly ( wowh  ) in the overlying aquifer at different 

monitoring-well locations (0.1, 0.5, 1, 2, and 5 km away from the leaky well), as a function of 
aquifer hydraulic conductivity (K1= 0.02, 0.2, and 2.0 m d-1) and leaky well permeability ( Lk  

= 2 × 10-7 m2 in the upper panel, and Lk  = 2 × 10-10 m2 in the lower panel). The dashed line 

represents the detection limit of pressure anomaly (= 0.1 bar). 

 

In the high leaky well permeability case ( Lk = 2 × 10-7 m2), the signal strength increased to 
sufficient values (above the detection limit) at all monitoring well locations. For the base-case 
reservoir conductivity (K1 = 0.2 m d-1, Figure 7b), the pressure anomalies can be detected within 
1 year at all observation points, even at the most distant one (5 km away from the leaky well). In 
the case of K1 = 0.02 m d-1 (Figure 7a), the detection time was slightly delayed, because the 
pressure propagation was slower than that in the base case. However, the pressure anomalies at 
the observation points relatively close to the leaky well were more significant than those in the 
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base case as a result of higher leakage rates. The case with a higher reservoir conductivity of K1 
= 2.0 m d-1 (Figure 7c) shows the opposite trend, slightly faster detection, but overall smaller 
signal strength.  

When the permeability of the leaky well is smaller (i.e., Lk = 2 × 10-10 m2), the pressure 
anomalies become weaker, both in terms of signal strength and delay of signal. In the base case, 
it takes about 1 year to have detectable pressure anomalies when the leaky well is located 0.5 km 
away, and wowh   is below the detection limit for the entire 10 years of injection/monitoring if 

the sensor is 2 or 5 km away from the leaky well (see Figure 7e). In the higher hydraulic 
conductivity case (K1 = 2.0 m d-1, Figure 7f), the pressure anomaly in the overlying aquifer is too 
small to detect even at a very close distance to the leaky well. That is, a pressure-based early 
leakage detection method can only be successful if the well permeability is large and the leakage 
rate is substantial.  

Figure 8 quantitatively assesses the detection region ( 1.0 wowh  bar) in the overlying 

formation as a function of injection time, reservoir conductivity, and leaky well permeability. For 
the base case, this region at a given injection time is illustrated by the contour line of 

1.0 wowh  bar centered at the leaky well (see Figure 8a). If a monitoring well is located within 

this region, the pressure anomaly measured at time TD is detectable. The size of the detection 
region and its temporal trends depend on the hydraulic conductivity of the aquifer (Figure 8b). 
The detection region in the case of K1 = 0.02 m d-1 is smaller than that in the case of K1 = 0.2 m 
d-1 because of the slower pressure propagation. On the other hand, in the case of K1 = 2.0 m d-1, 
the pressure changes quickly propagate, but the changes themselves are not as strong, resulting in 
the slower increase of the detection region.  

 

 
Figure 8: (a) Time-dependent detection region in the overlying aquifer, defined by contour 

lines of wowh  = 0.1 bar in the base-case condition, (b) changes in radius of the detection 

region over time for different aquifer hydraulic conductivities (K1 = 0.02, 0.2, and 2.0 m d-1), 
and (c) changes in radius of the detection region as a function of the leaky well permeability 
at different times. 

 

In addition, the detection region is greatly affected by the leaky well permeability; the detection 
region at a given time shrinks considerably with decreasing leaky well permeability (Figure 8c). 
This becomes quite obvious when the leaky well permeability is small. For example, in the case 
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of = 2 × 10-10 m2, the detection region at 10 years of injection time is only 1.3 km in radius 
(not shown). Correspondingly, the maximum leakage rate is 595 m3/d (10.4% of the injection 
rate) in the case of Lk = 2 × 10-7 m2, and 26 m3/d (0.5% of the injection rate) in the case of Lk = 2 
× 10-10 m2. In this latter case, it is unlikely for early leakage detection to be successful because 
(1) the detection region is too small to have a monitoring well near the unknown leaky well and 
(2) the detection time is too long to provide information about well leakage early enough. It is 
worth noting that further increases in the detection region are not significant for leaky well 
permeabilities higher than 10-8 m2. This indicates that the leakage rate and the corresponding 
pressure anomaly become less sensitive to leaky well permeability once the permeability is 
sufficiently large. The effect of this moderate sensitivity on estimation of the leaky well 
permeability is further discussed in the next section. 

2.5 CONCLUSIONS 

Current techniques for CO2 leakage detection are based on the physical, geophysical, or/and 
geochemical signatures that are induced by migrating CO2 and that can be observed in the deep 
and shallow subsurface, at the land surface, and in the atmosphere. Many of these techniques 
have relatively low spatial resolution and coverage, in comparison to the footprint of CO2 
plumes, and all these techniques can only detect anomalous CO2 signals long after CO2 leakage 
has first occurred. 

To provide an early indication of potential CO2 leakage before it occurs, a concept and 
framework of early leakage detection was proposed. The framework of the early leakage 
detection consists of four key components: site characterization for known surface faults and 
abandoned wells, early detection of brine leakage via inversion of pressure and surface 
deformation, CO2 leakage prediction and monitoring, and decision-making for risk management 
and mitigation. 

The basic idea of using pressure and surface-deformation anomalies for early detection of 
potential CO2 leakage is based on the fact that leakage-induced pressure signals travel much 
faster than the migrating CO2; thus such anomalies may be detected early enough for risk 
management measures taking effect in avoiding substantial CO2 leaks. The early detection 
methodology involves automatic inversion of anomalous brine leakage signals with efficient 
forward pressure and surface-deformation modeling tools to estimate the location and 
permeability of leaky features in the caprock. A global sensitivity analysis was conducted to 
better understand under which conditions pressure anomalies can be clearly identified as leakage 
signals, and evaluated signal detectability for a broad parameter range considering different 
detection limits and levels of data noise.  

 

 

Lk
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3. DEMONSTRATION OF EARLY LEAKAGE DETECTION METHODOLOGY 

In this section, the methodology for early leakage detection developed in Section 3 is applied to 
four examples with idealized systems of homogeneous storage formation, caprock, and above 
zone or overlying aquifer (see Figure 9). Because this study was only interested in the single-
phase brine flow for methodology demonstration, the semi-analytical solutions are used to 
calculate pressure and surface deformation. The first three examples (Section 3.1, 3.2, and 3.3) 
are used to demonstrate the leakage detection using pressure data only, with small pressure data 
noises, with large data noises, and with errors in rock properties, respectively. For these 
examples, the model setup and base-case parameters have already been described in Section 
2.4.1. Figure 9 shows the location of several monitoring wells used for leakage detection in 
varying combinations. The last example (Section 3.4) is used to demonstrate the leakage 
detection using both pressure and surface-deformation monitoring data.  
 

 
Figure 9: An idealized storage system consisting of a storage formation, a caprock 
(aquitard), and an overlying aquifer bounded by impervious boundaries at the top and the 
bottom, with an injection well and a leaky well (2 km apart), in (a) the vertical section along 
the injection and the leaky well, and (b) a plan view with the locations of the monitoring 
wells used in sensitivity analysis and inverse modeling. 

 

3.1 WELL LEAKAGE DETECTION WITH SMALL PRESSURE DATA NOISE 

In Example 1, the success and accuracy of the inversion methodology is investigated for 
different monitoring scenarios with varying number and locations of monitoring wells (see Table 
2), with single-well monitoring Cases S1 and S2 and two-well monitoring Cases D1, D2, and 
D3. The monitoring wells that are investigated in different combinations of single-well and dual-
well scenarios are MW4, MW5, MW6, and MW7 in Figure 9b at [1.5 km, 1.5 km], [1.5 km, -1.5 
km], [-1.5 km, 1.5 km], and [-1.5 km, -1.5 km], respectively. 

In the first two monitoring scenarios (S1 and S2 in Table 2), with pressure monitoring at only 
one monitoring well and the injection well, the success of the leaky well location search depends 
strongly on the initial guess. Generally, the detection is more successful when the initial guess is 
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closer to the actual leaky well location. In Case S1, where the monitoring well is located at [1.5 
km, 1.5 km], the three initial leaky well location guesses at [1 km, 1 km], [1 km, -1 km] and [-1 
km, -1 km] produce the exact location of the leaky well [2 km, 0 km], while the initial guess of 
[-1 km, 1 km] produces a wrong location at [0 km, 2 km]. All inverse solutions arrive at the 
correct permeability of the leaky well. The match between the simulated and the measured 
pressure anomalies is excellent regardless of the estimated location, indicating that the two 
estimated locations are non-unique solutions of the detection problem with one monitoring well. 
These findings are similar in Case S2 where the monitoring well is located at [-1.5 km, 1.5 km]. 
Again, two locations, [0 km, -2 km] and [2 km, 0 km], are identified as possible solutions, the 
leaky well permeability is accurately calibrated, and the match between the simulated and the 
measured anomalies at the monitoring locations is perfect. 

 

Table 2: Number of monitoring wells (MWs) and their locations in different monitoring 
scenarios and detection of the leaky well using only pressure anomalies with small data noise 

Case # of MWs 

MWs Initial guesses 

Location [X (km), Y (km)] Names Run1 Run2 Run3 Run4 

S1 1 [1.5, 1.5] MW4 Y Y N Y 

S2 1 [-1.5, 1.5] MW6 Y N Y Y 

D1 2 [1.5, 1.5], [1.5, -1.5] MW4, MW5 Y Y Y Y 

D2 2 [1.5, 1.5], [-1.5, 1.5] MW4, MW6 Y Y Y Y 

D3 2 [1.5, 1.5], [-1.5, -1.5] MW4, MW7 Y N N Y 

D3-1 2 [1.5, 1.5], [-1.0, -1.5] MW4, MW7 Y Y N Y 

D3-2 2 [1.5, 1.5], [-0.5, -1.5] MW4, MW7 Y N N Y 

 

With two monitoring wells (Cases D1 and D2), the inverse model uniquely and accurately 
estimates the correct leaky well location at [2 km, 0 km] and also finds the correct leaky well 
permeability, regardless of the initial guess. This indicates that the well leakage detection 
problem in Cases D1 and D2 has a unique solution. In contrast, when the two monitoring wells 
and the injection well are aligned as shown in Figure 9b (Case D3, with M4 and M7 as 
monitoring wells), the detection problem does not have a unique solution; i.e., the leaky well 
location is correctly estimated in two of the four initial guesses. In all runs, however, the 
estimated well permeability is correct. Note that this non-uniqueness in Case D3 is resolved by 
using both pressure and deformation data, which is discussed in Section 3.4.4.1.  

The comparison of the detection results in these three cases indicates that it is important to 
appropriately arrange monitoring wells with respect to the injection well in order to accurately 
detect a leaky well and enhance the inversion accuracy. The topography of the objective function 
supports this difference in performance. Figure 10 shows the contours of the objective function 
in the parameter plane of the easting and northing of the estimated leaky well location at kL = 2 × 
10-7 m2. The inverse modeling finds the global minimum of the objective function in Cases D1 
and D2 (see Figures 10a and 10b). However, the inverse problem has two global minima in Case 
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D3 (see Figure 10c), explaining the dependency of the leakage detection on the initial guess of 
well location. 

 
Figure 10: Contours of the objective function S in the parameter plane of the easting and 
northing of the leaky well. The plane intersects the parameter space at kL = 2 × 10-7 m2. 

 

Above monitoring scenarios all involve a regular well configuration. The inverse model in these 
cases detects either the leaky well or an “image” well (relative to the straight line along the 
injection and the monitoring well) and accurately calibrates the leaky well permeability, thus 
producing an excellent match between the actual and the estimated pressure anomalies (see 
Figure 11a). Two additional monitoring scenarios (Cases D3-1 and D3-2 in Table 2) were 
investigated with arbitrary locations of the two monitoring wells. In these cases, the inverse 
model accurately estimates both the well location and well permeability in two or three out of the 
four initial guesses; in other words, the search algorithm accurately finds the global minimum of 
the objective function shown in Figures 10d and 10e. For the failed trials, the estimated leaky 
well location does not coincide with the image well location. For instance, in Case D3-2 with the 
initial guess of [-1 km, - 1 km], the estimated leaky well location is at [-1.2 km, 1.1 km] and the 
estimated permeability of the leaky well is kL = 4 × 10-6 m2, implying that the search algorithm is 
not able to find the global minimum due to the presence of multiple local minima. In Cases D3-1 
and D3-2, unless the leaky well location and permeability is correctly estimated, the simulated 
pressure anomalies are systematically lower or higher than the measured ones (see Figures 11b 
and 11c), indicating the misfit between the model and the observed data is not appropriately 
appraised. In addition, the marginal standard deviation of the estimated parameters increases for 
the failed trials, and the increase is particularly notable in the leaky well permeability. Such plots 
shown in Figure 11 may be useful in evaluating the accuracy of the inverse solution. If 
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discrepancies remain between the actual and the estimated pressure anomalies, the leaky well 
location and permeability should either be re-calibrated using different initial guesses of the well 
location, or more sophisticated global minimization algorithms should be used. 

In all monitoring scenarios, the pressure anomalies measured at the monitoring locations are 
sufficiently large ( wowh   > 0.1 bar) within 0.5 years of fluid injection. With small data noise, the 

pressure anomalies observed at an early stage of injection are sufficiently strong and clear to 
accurately detect the leaky well. In the failed cases, the misfit between the model prediction and 
the measurements is evident, which allows easy detection of unsuccessful inversion. This 
suggests that early leakage detection can be achieved through inverse modeling of pressure 
anomalies in cases where noise in pressure monitoring data is small and the calibrated formation 
parameters are accurate.  

 

 
Figure 11: Comparison between the actual pressure anomalies (data) and the estimated 
pressure anomalies in the overlying aquifer in the monitoring scenarios: (a) Case D3, (b) 
Case D3-1, and (c) Case D3-2. Shown are the pressure-anomaly values at the injection well 
(= [0 km, 0 km]) and two monitoring wells. The location of the initial guess is at [-1 km, 1 
km] and the estimated leaky well location is [0 km, 2 km] in all cases. The solid line is the 
unit-slope line. 

 

3.2 WELL LEAKAGE DETECTION WITH LARGE PRESSURE DATA NOISE 

In Example 2, Cases D1 and D2 (with two monitoring wells) were used to test the inverse 
modeling method for pressure data with large data noise. In particular, the effect of incremental 
monitoring (and injection) duration on the accuracy and convergence speed of leakage detection 
was examined. Figure 12 shows the estimated leaky well location and estimated well 
permeability when pressure-anomaly data of the incremental monitoring periods of 1, 2, 3, and 6 
years are used. In Case D1, it was observed that even with large data noise the estimated leaky 
well location is already fairly accurate [1.8 km, ~0 km] at the end of the first year; it converges to 
[2 km, ~0 km] by the end of the third year. In Case D2, the estimated leaky well location is 
inaccurate during the first few years, but eventually converges to the true solution with 6 years of 
monitoring data available. This different behavior can be attributed to the spatial configuration of 
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the monitoring wells. In Case D1, the two monitoring wells are both 1.6 km away from the leaky 
well, while in Case D2 one well is at a distance of 1.6 km and the other at a distance of 3.8 km. 
Due to the relative proximity of the monitoring wells in Case D1, the anomalies in the pressure 
data are sufficiently strong even when taking into account large data noise. 

 

 
Figure 12: Convergence of (a) estimated location and (b) estimated permeability of the leaky 
well using the incremental pressure-anomaly datasets of 1, 2, 3, and 6 years in two different 
monitoring scenarios (Cases D1 and D2 in Table 2). Also shown are the marginal standard 
deviations of the estimated leakage parameters. In Figure 12a, the number on each point 
represents the end year of the incremental monitoring period. 

 

The estimated leaky well permeability values follow a trend of increasing accuracy with time 
that is similar to that of the estimated locations (see Figure 12b). For instance, the leaky well 
permeability at the end of the first year is off by almost one order of magnitude (Case D1) or two 
orders of magnitude (Case D2), but converges to the true value (or close to the true value) after 3 
and 6 years, respectively. That is, in the early monitoring and inversion stages, the inversion 
result may not only estimate a wrong leakage location, but may also infer an inaccurate leaky 
well permeability, which means that the potential magnitude of leakage would be incorrectly 
assessed (in Cases D1 and D2, it would be underestimated). It is interesting to note that the 
marginal standard deviation of the estimated leaky well permeability actually increases with 
time, a trend opposite to the improving accuracy of the permeability estimate. This might be due 
to the reduced sensitivity of the leakage rate (and the resulting pressure anomaly) to leaky well 
permeability at high permeabilities.  

3.3 WELL LEAKAGE DETECTION WITH MODEL CALIBRATION ERRORS 

Examples 1 and 2 assumed that the forward model used in the inversion scheme for pressure and 
surface-deformation anomalies is able to predict the “expected” behavior of the storage system 
without any error or uncertainty; in other words, all formation parameters are known and the 
only unknown parameters in the inversion scheme are the location and permeability of the 
leakage pathways. In practice, however, the forward model may not be “perfect” to accurately 
predict the pressure evolution profiles, because: (1) the data on site characterization and field 
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tests prior to CO2 injection are insufficient to perfectly calibrate a forward model; (2) multiscale 
heterogeneity of hydrogeological properties affects the pressure responses in a complicated way 
that can never fully be known; and (3) the field data used for model calibration may already 
comprise signatures of unknown leaky pathways near the injection zone. Since a small error in 
the model parameters can have more significant impact on identifying leakage pathways than 
measurement noise, more complex inversion problems were tested in which not only the leakage 
parameters are unknown but also relevant formation parameters are uncertain. The errors 
stemming from uncertain model parameters are accounted for by including those model 
parameters as the parameters to be estimated during the inversion procedure and simultaneously 
estimating them with leakage parameters. 

In Example 3, it was assumed that the hydraulic conductivity (K2) and specific storativity (S2) of 
the overlying aquifer include 50% error, assuming that no site-specific data are available and 
initial guesses need to be based on the literature. It was furthermore assumed that the hydraulic 
conductivity (K1) and specific storativity (S1) of the storage formation have been estimated from 
a pumping test conducted before CO2 injection so that uncertainty is smaller. The monitoring 
well used is located 100 m away from the injection well. The estimated K1 and S1 are 9.78E-2 
and 2.14E-6, and are 2.2% underestimated and 13.8% overestimated, respectively.  

Figure 13 shows the pressure evolution “measured” in the storage formation and the overlying 
aquifer at MW4 along with the initial “calculated” model prediction. Since this is a synthetic 
example, the “measured” evolution is based on executing the forward model with the leaky well 
and the actual model parameters. The “calculated” model predictions is also conducted with the 
forward model, but incorporating the errors in the model parameters and not accounting for the 
leaky well (since it is unknown). The pressure increases in the storage formation are rapid and 
strong, and those in the overlying aquifer are delayed and much more moderate, which is shown 
in the inset figure in Figure 13b. This inset figure provides a close look of the first year of 
monitoring, and it takes about 50 days to observe a sufficiently large pressure buildup in the 
overlying aquifer that can be considered as leakage signal. Even though the model does not take 
into account the leaky well and includes some errors in the model parameters, the model 
prediction seems to be sufficiently close to the measured data in the storage formation up to 
about 1 year, and the deviation from the measurements becomes distinct after that. On the other 
hand, the model prediction in the overlying aquifer is clearly off from the measured data since in 
our model condition, the diffuse leakage alone cannot result in sufficient pressure buildup in the 
overlying aquifer within the given time frame. Therefore, the presence of a leaky pathway can be 
hypothesized from this pressure anomaly observed in the overlying aquifer. 
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Figure 13: Pressure buildup in (a) the SF and (b) the OA at MW4. 

 

Figures 14 and 15 show the estimated leaky well location and permeability when the uncertain 
model parameters K1, K2, S1, and S2 are also included as the parameters estimated through the 
inversion. The pressure data of the incremental monitoring periods of 1, 2, 3, and 6 years are 
used. The two cases, i.e., (a) only using the pressure data in the overlying aquifer (Case E1), and 
(b) using the pressure data in both the overlying aquifer and the storage formation (Case E2) are 
compared in terms of the accuracy and convergence speed of leakage detection. Also, among 
four different initial guesses, the results of RUN1 and RUN4 are presented.  

In Case E1, the estimation of the leaky well location improves with time, but either has high 
standard deviations (RUN1) or is still inaccurate (RUN4). In Case E2, it was observed that the 
estimated leaky well location converges close to the actual location as the monitoring period 
increases. Particularly, for RUN4, the estimated location has converged to the true location in 2 
years. The accuracy of the estimated leaky well permeability also shows the similar trend. With 
the pressure data only from the overlying aquifer, the accuracy is in generally poorer than that 
with the data from both the overlying aquifer and the storage formation. In most trials, the 
estimated value is off by 1–2 orders of magnitude. Moreover, the marginal standard deviation of 
the estimate is sometimes too large so that the range cannot be shown in Figure 15, in which 
cases the symbols are marked with an asterisk (*). The sensitivity of the pressure response to the 
leaky well permeability significantly decreases when the permeability is sufficiently large (i.e., 
10-8 m2) (Jung et al., 2013). Thus, the high uncertainty, particularly in the overestimated cases, is 
not surprising, regarding also the uncertainties in the model parameters.  
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Figure 14: Convergence of the estimated leaky well locations using the incremental pressure 
monitoring datasets of 1, 2, 3, and 6 years when (a) only using the pressure data in the 
overlying aquifer, and (b) using the pressure data in both the overlying aquifer and the 
storage formation. Also shown are the marginal standard deviations of the estimated leakage 
parameters. The number on each point represents the end year of the incremental 
monitoring period. 

 

 
Figure 15: Convergence of the estimated leaky well permeabilities using the incremental 
pressure monitoring datasets of 1, 2, 3, and 6 years when (a) only using the pressure data in 
the overlying aquifer, and (b) using the pressure data in both the overlying aquifer and the 
storage formation. For illustration purpose, only the minus direction of the marginal 
standard deviation is shown for RUN1, and the plus direction for RUN4. Also, the asterisk 
symbol (*) means that the marginal standard deviation of the estimate is omitted because it 
is too large to be included in the figure. 

 

Even though the estimated location and permeability of the leaky well are not accurate in Case 
E1, the match between the measured and calculated pressure is good regardless of the monitoring 
time, indicating that the estimates are non-unique solutions of the detection problem. This non-
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uniqueness is not favorable for successful risk assessment, and may result in an ineffective 
management plan. For instance, it is assumed that the leaky well can be located based on the 
estimated leaky well location in Case E1 with the 6 years of monitoring data. The continuous 
pressure monitoring after the first 6 years shows that the calibrated model, which now includes 
the leaky well, accurately predicts the pressure evolution at all monitoring wells. However, due 
to the inaccurate leaky well permeability, the predicted cumulative leakage is about three times 
smaller than the actual leakage, and the risk management plan based on this underestimation will 
not be able to prevent the damage and hazard by excessive leakage.  

This hypothetical study shows that (1) the above-zone monitoring is important for the early 
leakage detection, particularly when the model uncertainties cannot be ruled out, and (2) the 
model uncertainties can be successfully parameterized and estimated simultaneously with the 
leakage parameters. It is also important to note that pressure monitoring in the storage formation 
and its use for the inverse modeling is critical to improve the accuracy and convergence speed of 
the estimation.  

3.4 WELL LEAKAGE DETECTION USING PRESSURE AND SURFACE-
DEFORMATION MONITORING DATA 

3.4.1 Model Setup and Forward Model 

In Example 4, this study attempted early leakage detection using pressure monitoring data and 
surface-deformation data. As explained in Section 2.3.2, the surface deformation is approximated 
via vertical integration of the pressure-induced volumetric changes in aquifers and aquitards, 
using Equation 2. Similar to the pressure anomalies, the surface-deformation anomalies due to 
leakage are obtained by calculating the difference wowb   between the “monitored” system 

response (induced by both injection and leakage) and the “expected” system response (induced 
by injection only).  

Note that approximate surface-deformation anomalies may cancel out in a storage system like 
the first three examples where the storage aquifer and the overlying aquifer have similar 
thickness and compressibility. This is because the volumetric vertical expansion induced by the 
fluid leakage into the overlying aquifer is similar to volumetric vertical contraction caused by 
leakage out of the storage formation. In order to examine storage site conditions where leakage-
induced surface deformations are detectable, the thickness of overlying aquifer increased from 
60 m to 120 m and modified the pore compressibility of the overlying aquifer from 4.5 × 10−10 
Pa−1 to 18.0 × 10−10 Pa−1. In other words, a less consolidated overlying aquifer is representative 
of a shallower formation. (For consistency, the caprock thickness also increased to 600 m.) As a 
result of these modifications, the uplift induced by the fluid leakage into the overlying aquifer is 
now larger than the leakage-induced subsidence in the storage formation, leading to detectable 
deformation anomalies at the ground surface. All other model parameters and the configuration 
of the injection well, the leaky well, and the two monitoring wells in Cases D1, D2, and D3 are 
the same with the first three examples. The permeability of the leaky well is Lk = 2 × 10-7 m2. 

3.4.2 Detectability of Surface Deformation 

To obtain sufficient spatial coverage, the surface-deformation anomalies were calculated with a 
spatial resolution of 500 m × 500 m at a few selected times of interest during injection and 
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monitoring. Figures 16a–c show the contours of surface deformation, wb , at 2, 5, and 10 years 

after injection starts, respectively. Figure 16d shows how the deformation anomalies, wowb  , 

evolve as a function of time, using the 1-mm contour line as the cut-off value above which 
detection is possible. Leakage signals in the surface deformation can be detected as early as 2 
years after the start of fluid injection, i.e., the contour lines in Figures 16a–c start deviating from 
the perfectly circular lines in the case of no leakage. The surface-deformation anomalies in 
Figure 16d are clearly noticeable. The anomalous signals are centered at the leaky well, and the 
radius of the signals increases as a function of time. This study concluded that leakage-induced 
deformation anomalies may be useful for leakage detection as a monitoring tool with dense 
spatial coverage. However, strong deformation anomalies are expected only for relatively large 
leakage rates. For instance, in the case of Lk = 2 × 10-10 m2, wowb   never exceeds the 1-mm 

cutoff value during the 10-year injection period. 

 

 

Figure 16: Contour plot of wb
 
at (a) 2 yr, (b) 5 yr, and (c) 10 yr, and (d) time-dependent 

contour lines of wowb  = 1 mm for kL= 2 × 10-7 m2.  
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3.4.3 Inverse Modeling for Well Leakage Detection 

This study assessed the performance of inverse modeling for detecting the leaky well using 
pressure and surface-deformation monitoring data in Cases D1, D2, and D3, and compared the 
detection results with those using only pressure data. Case D3, which is an otherwise non-unique 
inverse problem when only pressure data are available, was used to demonstrate the 
improvement in detection capability by jointly inverting for pressure and deformation. Cases D1 
and D2 (with large data noise for pressure) were used to demonstrate the enhanced convergence 
speed. The pressure data noise was introduced to the data in the same way as described in 
Sections 3.1 and 3.2. Similar to the pressure data noise, the deformation data noise was also 
introduced to the measured surface-deformation data. Since the pixel size of 500 m × 500 m used 
for the deformation data is rather large and each pixel contains aggregated information for the 
inverse modeling, it was assumed the data noise with a small standard deviation of 0.1 mm. 

3.4.3.1 Detection with Small Data Noise 

In Case D3, when using only pressure data, the solution of the detection problem is non-unique, 
with the estimated locations depending on the initial guess for the leaky well location. This non-
uniqueness is resolved when using both pressure and deformation data. The leaky well location 
and the well permeability are accurately estimated for all initial location guesses as early as 1 
year after fluid injection. This study concluded that surface-deformation data, which provide 
dense spatial information, can effectively complement pressure data that are typically measured 
at a limited number of monitoring wells.  

3.4.3.2 Detection with Large Data Noise 

Figure 17 shows the estimated leaky well location for different incremental monitoring periods 
for Cases D1 and D2, and compares the inverse modeling results using both pressure and 
surface-deformation data with the results obtained using only pressure data. In the latter case, the 
estimated well locations are [1.8 km, ~0 km], [1.9 km, ~0 km], [2.1 km, ~0 km], and [2.1 km, ~0 
km] in Case D1, and [0.9 km, 1.2 km], [0.8 km, 1.1 km], [1.9 km, 0.2 km] and [1.1 km, 0.6 km] 
in Case D2, for incremental monitoring periods of 1, 2, 3, and 6 years, respectively. In Case D2, 
the estimated location with 6 years of monitoring data is even less accurate than the one 
estimated using 3 years of monitoring data. In both Cases D1 and D2, the estimated leaky well 
location is still off from the exact location at [2 km, 0 km] when using up to 6 years of 
monitoring data. Note that these estimates of the leaky well location are generally less accurate 
than those in Section 3.2 (Figure 12), which is due to weaker pressure anomalies resulting from 
the modifications made in terms of pore compressibility and aquifer thickness. 
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Figure 17: Comparison of the convergence of estimated leaky well locations with increase in 
incremental monitoring period in (a) Case D1 and (b) Case D2, obtained using inversion of 
pressure data only and using joint inversion of pressure and surface-deformation data.  

 

In contrast, when both pressure and deformation data were used in the inverse modeling, the 
leaky well was detected much earlier and more accurately. For example, all estimated well 
locations were within 34 m from the exact well location [2 km, 0 km] in Case D1, and within 
33 m in Case D2 (Figure 17). This clearly shows the advantage of using both pressure and 
surface-deformation monitoring data for early detection of leakage pathways. In addition, the 
results of leakage detection are less affected by the suitability of the monitoring well 
configuration. It should be noted, though, that the successful detection of unknown leakage 
pathways using surface deformation was achieved here for an idealized storage system and a 
relatively small detection limit. While this study demonstrates the potential benefit of using 
surface-deformation data in addition to pressure data, these findings need to be confirmed in real 
GCS applications. 

3.5 CONCLUSIONS 

The inversion methodology for early leakage detection was used to estimate leakage parameters 
(i.e., the location and permeability of the leaky well) in four synthetic examples of idealized two-
aquifer-and-one aquitard storage systems, with an injection well and a leaky well, for different 
monitoring scenarios. In Example 1 with formation parameters and pressure data of no 
uncertainties and errors, the inversion methodology can produce accurate leakage estimates, no 
matter whether the detection problem itself is unique or non-unique depending on the number 
and configuration of monitoring wells. In a random configuration of two monitoring wells, the 
inversion methodology may need different initial guesses to have accurate estimates of leakage 
parameters and a best match for pressure data. The detection is stable after the first half year of 
injection and monitoring. 

In Example 2 with two monitoring wells and large pressure data noises, the inversion 
methodology can improve the estimation accuracy of the leakage parameters with incremental 
monitoring time and data used in the inversion. The detection accuracy and convergence speed 
with monitoring time depend on the actual configuration of the two monitoring wells. For an 
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optimal configuration, an accurate detection can be achieved within the first 2–3 years of 
monitoring. When the formation parameters are uncertain and the pressure data have large noise 
(Example 3), the detection accuracy and convergence speed decrease, but can be improved by 
simultaneously calibrating the formation parameters and leakage parameters using data of 
pressure anomalies in the overlying formations as well as the storage formation.  

As shown in Example 4, joint inversion of pressure and surface-deformation measurements can 
significantly improve the speed of convergence toward the true solution of the leakage 
parameters and enable earlier, accurate detection of the location of the leaky well. This example 
demonstrates how high-resolution deformation data can help identify the leakage location and 
how the pressure data from a limited number of monitoring wells can help estimate the 
permeability of a leaky well or the leakage rate.  
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4. APPLICATION OF EARLY LEAKAGE DETECTION METHODOLOGY TO THE 
KETZIN SITE IN GERMANY 

This section presents an application of the early leakage detection method, developed in Section 
2 and demonstrated in Section 3, to the Ketzin CO2 pilot test site in Germany. This application 
includes the three components of the framework of the leakage detection system: site 
characterization, model calibration, and leakage detection (see Figure 4). The leakage detection 
is demonstrated in Section 4.3 using a hypothetical example with an (assumed) leaky well 
located at 675 m from the injection well. The model calibration is demonstrated in Section 4.2 
using the cross-well pumping tests between one injection and two monitoring wells conducted 
prior to CO2 injection. The site characterization is presented in Section 4.1 with well locations, 
core data, and geologic model. 

4.1 SITE CHARACTERIZATION AT KETZIN, GERMANY 

The CO2 pilot test site at Ketzin, Germany, 25 km west of Berlin, is situated in the structure of 
the Roskow-Ketzin double anticline, and located in the Northeast German Basin between the 
Northwest German Basin and the Polish Trough (Figure 18). 

 

 
Figure 18: Structure of the Roskow-Ketzin double anticline, highlighted by the isolines 
(meters below ground level) of the strongest seismic reflector of the Triassic. Shown are the 
locations of former exploration boreholes penetrating the Stuttgart Formation (dots) and the 
location of the Ketzin CO2 boreholes (star), the extension of the 3-D seismic data (stippled 
black lines), and the geologic model domain size (black square). Inlet map shows the extent 
of the European Permian Rotliegend Basin (grey-shaded) and the location of the Ketzin site 
in the Northeast German Basin (NEGB), which is situated between the Northwest German 
Basin (NWGB) and the Polish Trough (PT) (from Norden and Frykman, 2013). 
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For the pilot test, one injection well (Ktzi 201) and two monitoring wells (Ktzi 200 and 202) 
were drilled into the Stuttgart formation (the storage formation), and one shallow monitoring 
well (P300) was drilled at a depth of 440 m into the Exter formation, whose sandstone layers are 
collectively called as the “above-zone” for pressure monitoring (Figure 19). P300 has not 
experienced any pressure anomalies since August 2011 (completion of the drilling), indicating 
that there is no leakage through the wells. As a result, a hypothetical leakage scenario was 
formulated for the leakage-detection application by assuming a leaky well is located at 675 m 
away from the injection well (Section 4.3). 

 
Figure 19: Left shows the facility of CO2 injection and monitoring at Ketzin, Germany: the 
injection well (Ktzi 201), the two observation wells (Ktzi 200 and 202) in the Stuttgart 
formation, the shallow observation well (P300); the right shows the stratigraphic column for 
the storage formation (Stuttgart), the caprock (Weser and Amstadt) and the above zone 
(Exter formation) (from Martens et al., 2012). 

 

The site characterization, mainly conducted by Geoforschungszentrum Potsdam (GFZ), includes 
the drilling, geophysical logging, and coring and measurements, pumping tests prior to CO2 
injection, and development of a 3-D geologic model. Here the nature of the storage formation is 
briefy described, and the geologic model used for this applictation. 

The Stuttgart formation, situated at depths between 630 and 710 m, was selected for CO2 
injection (Förster et al., 2006; Kempka et al., 2010). It is highly heterogeneous in lithology, 
where sandy string-facies rocks of fluvial origin are alternated with muddy floodplain-facies 
rocks (Förster et al., 2006; Kempka et al., 2010), reflecting a change in depositional style from 
playa to fluvial environment (Beutler et al., 1999). In the Stuttgart formation, layers of individual 
sandstone bodies are stacked into units of several meters thick, forming elongated channel belts 
(Förster et al., 2010). The lateral extension of the channel belts was estimated to vary from tens 
to hundreds of meters (Förster et al., 2010; Wurster, 1964). The distribution of the sandstone 
channels is difficult to predict on a regional scale (Frykman et al., 2006). Above the Stuttgart 
formation are the Weser and Arnstadt formations that have playa-type facies (Förster et al., 2006; 
Kempka et al., 2010), which mainly consist of claystone, silty claystone, and anhydrite. These 
formations have an average thickness of approximately 210 m providing good sealing properties 
for the CO2 injection (Förster et al., 2006; Kempka et al., 2010). 
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Core samples are available from the three boreholes (Ktzi 200, Ktzi 201, and Ktzi 202) drilled 
into the Stuttgart formation at the Ketzin site (Prevedel et al., 2009). The core analysis (Figure 
19) showed sandstone units of up to 9–20 m thickness are located in the top part of the formation 
and they are considered as typical channel facies; in the lower and middle parts there are sparsely 
distributed sandstone layers of 0.01–1 m thickness, and are considered as overbank facies 
(Förster et al., 2010). The thick sandstone units in the top of the formation are further subdivided 
into two layers with thickness of 5–8 m by a strongly cemented sandstone layer (Förster et al., 
2010; Wiese et al., 2010). The core has porosity and permeability varying in large ranges, with 
the porosity from 5 to >35%, and the permeability from 0.02 to >5,000 mD (Norden et al., 2010). 
The arithmetic average of the horizontal core permeabilities of the sandstone unit are in a range 
of 500–1,100 mD (Norden et al., 2010; Wiese et al., 2010). The permeability of the mudstone 
layer is at the level of microdarcy (Norden et al., 2010; Wiese et al., 2010). 

 

 
Figure 20: Well configurations, lithological profiles, and measured rock properties of the 
cores from Ktzi 200, 201, and 202. The first column shows the borehole configuration 
(Prevedel et al., 2009) with the consolidated casing cements in grey. The second column is the 
lithological profile (Förster et al., 2010), the third column represents the caliber log, the 
fourth and fifth columns show the measured porosity and permeability (Norden et al., 2010). 
The circles refer to measured values from core samples, the green line is the estimated value 
from Coats equation, and the blue line is the NMR permeability. 

 

The geological model for this simulation study was provided by GFZ. It was generated using a 
geostatistical approach, based on a collection of measurement data including seismic profiles, 
stratigraphic and lithological information from boreholes, and CO2 arrival time (Förster et al., 
2006; Kempka et al., 2010). The permeability and porosity distributions used in this application 
are interpolated from the geological model using the inverse-distance approach. 
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Figure 21: Permeability (a) and porosity (b) distributions in the geologic model. 

 

4.2 MODEL CALIBRATION OF PUMPING TESTS 

4.2.1 Pumping Test Data 

Pumping tests were conducted in the wells Ktzi 201, Ktzi 200, and Ktzi 202 sequentially from 
September 2007 to January 2008 (Wiese et al., 2010). Three pumping events have occurred in 
Ktzi 201. After 10 days, the pumping started in the Ktzi200. The last pumping test was 
conducted in Ktzi 202 after more than 95 days. Pumping rate varied with time and was recorded 
during the tests. For each pumping test, pressures were measured simultaneously in the pumping 
well and two corresponding observation wells (Wiese et al., 2010). Two transducers were 
installed in the pumping well: one close to the pump and the other (high-resolution gauge) close 
to the screen (Wiese et al., 2010). Similar drawdown readings were obtained from the two 
transducers, except in the early stage of pumping (Wiese et al., 2010). Possible explanations for 
the discrepancy include unstable flow conditions in the early stage, wellbore storage, and the 
difference in density between the original fluid filled in the wellbore and the formation brine 
(Zettlitzer et al., 2010). Pressure in the observation wells was measured with a transducer 5–15 m 
below the water table (Wiese et al., 2010). 

The three wells (Ktzi 200, Ktzi 201, and Ktzi 202) form a right triangle, with Ktzi 201 and Ktzi 
200 being 50 m apart and Ktzi 200 and Ktzi 202 being 100 m apart (see Figure 22). The 
boreholes have a diameter of 0.21 m. The casings are 0.12 m in diameter. Pre-perforated sand 
filter segments were implemented. The wells, however, are completed without cementation in 
the section of the Stuttgart formation. Thus, the annular spaces provide good connections 
between the well and the formation layers at different depths. The pumping tests were designed 
to serve multiple purposes; among them was to remove the drilling fluid from the wellbore and 
replace it with formation water (Wiese et al., 2010; Würdemann and Zimmermann, 2010). As 
such, the pumping tests were not optimized for hydraulic tests and packers were not used in the 
tests. 
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Figure 22: Measured pumping rates and actual value used in model. 

 

4.2.2 Forward Modeling of Pumping Tests 

The forward model for the pumping tests was constructed for TOUGH2, using the module EOS9 
that solves the Richards equation for isothermal saturated and unsaturated flow (Finsterle, 1999; 
Pruess et al., 2011). A fluid viscosity of 1.257 × 10-3 Pa·s and a fluid density of 1.157 × 103 
kg/m3 was assigned to represent the in-situ properties of the formation brine with a salt mass 
fraction of 0.22 wt% and at 34ºC.  

A 3-D mesh covering an area of 1,400 m × 1,400 m was generated using WinGridder (Pan, 
2007) (see Figure 23). The well elements have a diameter of 0.21 m, the same as the borehole 
diameter. To capture the pressure evolution and fluid flow around each well, a radially 
discretized submesh was created, the radial increments of which increase from 0.108 m to 6 m. 
This high-resolution submesh that has a radius of 10 m surrounding each well ensures an 
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accurate simulation of the near-well fluid flow and pressure propagation. The well screens are 
considered by keeping the horizontal connections of the well elements within the screen 
intervals. For those elements outside of screen intervals, the horizontal connections are removed 
and only vertical connections are allowed. Outside of the submeshes are uniform columns of 10 
m × 10 m, which are increased to 50 m × 50 m, and then, 100 m × 100 m in the far-field areas. 
The Stuttgart formation at the Ketzin site has an average thickness of approximately 72 m. In the 
vertical direction, the mesh covers the whole Stuttgart formation and has a thickness slightly 
varying spatially, depending on its location in the anticline structure. The core logging data 
showed a permeable sand layer of approximately 17 m thickness is located in the upper part of 
the Stuttgart Formation (Norden and Frykman, 2013). To ensure mesh that is fine enough to 
accurately capture the flow in the sand layer, the top 24 model layers have an average thickness 
of approximately 1 m. Below the sand layer is the mudstone layer of low permeability. 
Relatively larger thicknesses are used for these model layers: 3 m for the middle 6 model layers, 
and 5 m for the bottom 6 model layers. The entire 3-D mesh consists of 47,772 gridblocks. 

 

 
Figure 23: Mesh in 3-D view, map view and zoomed view in the near-well region. 

 

The porosity of sandstone layers was assigned with a fixed value of 0.2 and those of mudstone 
and shale layers are assigned with a fixed value of 0.1. A fixed permeability value of 1 × 10-15 m2 
was applied to the mudstone layers and 1 × 10-16 m2 to the shale layer. The well elements had a 
high permeability of 4.98 × 10-8 m2. Change in pressure in the top element of each well was used 
for comparison with the corresponding measured changes. 
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A simulation was first run to obtain the equilibrated pressure profile with the in-situ density of 
formation brine, which served as the initial condition for the system. For the duration of the 
pumping tests, the changes in pressure are rather small at the far-field boundary of the model 
domain. Thus, a no-flow boundary condition was used in the model. Time-dependent pumping 
rates were formulated to represent the measured pumping rates Inversion of Pumping Tests 
Using iTOUGH2 

The inverse modeling tool iTOUGH2 was used for automatic model calibration (Finsterle, 1999). 
The model domain was parameterized using multiple zones, with each zone assumed to have 
uniform rock properties. Three parameterization schemes were considered, reflecting three 
different conceptualizations of the system. As a global measure of misfit between measured 
values and calculated system response, the objective function was calculated using weighed least 
square of residuals by considering the measurement error (Finsterle, 1999). In the pumping tests, 
the pressure perturbation in the pumping well was an order of magnitude greater than in the 
observation well. The weight of each pressure dataset was then normalized to its maximum 
drawdown, so that each pressure dataset gets roughly the same weight. The Levenberg-
Marquardt minimization algorithm was applied to find the minimum of the objective function 
through multiple iterations (Finsterle, 1999). A constant perturbation factor of 0.1 was specified 
for the numerical computation of the Jacobian matrix. Calculation of the elements of the 
Jacobian matrix for sensitivity analysis was conducted using a forward finite different quotient. 
Here only the inversion and results are presented for the first case, for details of other cases, refer 
to Chen et al. (2013). 

This study honors the shale layer subdividing the sandstone unit into two layers. This concept 
was adopted from the observation of the core logs in both Ktzi 200 and Ktzi 201: a low-
permeability layer (0.1–1 mD) of about 2-m thickness subdivides the sandstone unit into two 
layers at the depth of 643 m (Norden et al., 2010). The model has the upper and lower sandstone 
layers, a shale layer in between, and an underlying mudstone layer (Figure 5-7). Since the wells 
are not cemented in the reservoir section, the model has the Ktzi 200 and Ktzi 201 wells 
connected to both the upper and lower sandstone layers. Ktzi 202 has only a layer of permeable 
sandstone approximately 8-m thick, located at depths between 628 m and 636 m (upper 
sandstone layer). At the depths where it would have been expected the lower sandstone layer to 
be located, it is instead composed of low permeability mudstone, based on core data. Therefore, 
only horizontal connections were provided between Ktzi 202 and the surrounding reservoir in the 
upper sandstone layer. 

The upper and lower sandstone layers were parameterized using multiple zones in each layer 
(Figure 23). The near-well 90 m × 180 m region was uniformly parameterized into nine zones in 
the upper sandstone layer, and seven in the lower sandstone layer. Surrounding this region are 
four zones in the eastern, western, southern, and northern directions, which may or may not serve 
as hydraulic boundaries depending on their assigned (or estimated) permeability values. The 
logarithm permeability values of the 24 zones were subject to calibration and have a uniform 
initial guess of -13.5. The permeability of the shale layer was fixed to 1 × 10-16 m2, and that of 
the muddy layer was fixed to 1 × 10-15 m2. While keeping other hydraulic parameters fixed (e.g., 
specific storativity and porosity), the logarithm permeability values were calibrated against the 
observed pressure changes in all the wells of all the pumping events. 
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Figure 24: Parameterization for inversion. 

 

4.2.3 Inversion Results and Discussion 

The calibrated model produced calculated pressure drawdown in excellent agreement with the 
measured data (Figure 25). The objective function of the model was 0.123×105. The calculated 
system responses match the data well except for dataset P201O200, where measured pressure in 
Ktzi 200 was extremely small as pumping was conducted in Ktzi 201, and for the recovery 
period (after ~18.5 days) in dataset P200O200. Regarding dataset P201O200, the maximum 
drawdown in Ktzi 200 was approximately 1/10 of that in the other observation well (Ktzi 202), 
and the model overpredicts the pressure drawdown Ktzi200. The discrepancy might be caused by 
measurement error or local heterogeneity near the wellbore that was not captured in the model. 
Nonetheless, the overall excellent match between the calculated system response and measured 
data indicates that this model captures the essential elements to describe the flow between wells 
induced by the pumping tests in the Stuttgart formation. 

The estimated spatial distributions of logk in the upper and lower sandstone layers are shown in 
Figure 24. Zones of relatively higher permeability are observed between Ktzi 201 and Ktzi 202 
and between Ktzi 200 and Ktzi 202, compared to a less permeable zone that is between Ktzi 200 
and Ktzi 201. For example, in the upper sand layer, a permeable “channel” (U4, U7, and U8) 
with estimated permeability ranging between 100–1,000 mD connects Ktzi 201 and Ktzi 202. 
The zone U6 connecting Ktzi 200 and Ktzi 202 has an estimated permeability of 67 mD. 
However, a relatively low permeability zone is located between Ktzi 200 and Ktzi 201 and the 
estimated permeability values of U2 and U5 are 23 mD and 0.01 mD, respectively. In the lower 
sandstone layer, the zones D2 and D5 have estimated mean permeabilities of 0.001 mD and 
0.015 mD, respectively. 

Most boundary zones are estimated to have low permeabilities with only a few exceptions. In the 
upper sandstone layer, low permeabilities are observed in the northern (NU, 0.73 mD), western 
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(WU, 5.2 mD), and eastern boundary zones (EU, 5.2 mD). The southern boundary zone (SU), 
however, is a quite permeable (169 mD). The lower sandstone layer shows a different pattern of 
logk distribution in the boundary zones. As the southern and northern boundary zones are less 
permeable, the permeabilities of the eastern and western boundary zones are in a range of 75–
138 mD. 

 
Figure 25: Calculated (blue squares) and measured (red squares) pressure drawdown. 

 
Even though the estimated permeabilities in the zones where the wells are located (in the near-
well region, as described above) actually represent spatially averaged (effective) values for the 
entire zone, these estimated values are compared to the measured core permeability data 
available at these wells. Similar to their corresponding core logs, the calibration results show that 
in Ktzi 201 and Ktzi 200 the upper sandstone layer is less permeable than the lower sandstone 
layer (logk of U1 is less than for D1 and logk for U3 is less than for D3). The zones U1 and D1 
(where Ktzi201 is located) have calibrated permeabilities of 38 and 127 mD, respectively. Those 
of U3 and D3 (where Ktzi 200 is located) are 55 and 217 mD, respectively. The core logging in 
the Ktzi 202 borehole shows the presence of only one layer of high permeability sandstone, 
below which is the mudstone layer of low permeability. The calibration results are consistent 
with the measured core logging data, with the estimated permeability of the upper (U9) and 
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lower (D9) sandstone layers being 86 mD and 0.02 mD, respectively. While the estimates are 
generally lower than the geometric means of the measured core permeabilities, they are within an 
order of magnitude and show a consistent trend (Table 3). These are other results from literature 
will be further analyzed in the discussion section. 
 

 
Figure 26: Estimated log(k) values and standard deviations (indicated after the +/-) for each 
zone in the upper and lower sandstone layers 

 

The model produces calibrated values with relatively small standard deviations (i.e., low 
uncertainty). Due to increased sensitivity to the pressure data, the calibrated values close to the 
pumping wells in general have relatively smaller deviation, compared to those far away from the 
wells, with some exceptions for zones D2, D4, and D6. These zones may be less sensitive to the 
pressure data from the pumping tests because of their position relative to the pumping wells and 
having either very high or low permeability. For example, the estimate for D4 has a standard 
deviation of 24.4, which means this zone is not sensitive to the pressure data. The insensitivity of 
zone D4 may be related to the fact that flow in that zone is controlled by the surrounding low 
permeability zones. The relatively high uncertainty estimates for zones D2 and D6 may result 
from the logk values for these zones being several orders of magnitude lower than for most other 
zones in the model, and the system response is not very sensitive to small changes in these low 
values; nonetheless, regions D2 and D6 can be categorized as low permeability.  

The inversion results show that channels (adjacent zones of high permeability) are present 
between the Ktzi 202 and Ktzi 200/Ktzi 201 and a low-permeability barrier lies between the Ktzi 
201 and Ktzi 200. The wells are located in a semi-closed system: the near-well region is bounded 
by low permeability zones in three sides with one or two sides (southern and/or western) open to 
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higher permeability regions. Modeling a semi-closed system is essential for reproducing the 
pressure responses of the pumping tests, and this required choosing a parameterization that 
allows for the characteristics of such a system to be estimated by inverse modeling. 

4.2.4 Comparison of Inversion Results with Field CO2 Injection Monitoring Data 

4.2.4.1 Comparison with Values Reported in Literature, and Derived from Core Analysis  

The estimated permeability is compared with the literature values and measured core 
permeability in Table 3. Wiese et al. (2010) analyzed the exact pumping tests data using 
analytical approaches. The calibrated permeability values near the well locations in this study are 
similar to their calibrated values from the build-up phase with applied boundary configurations 
(Wiese et al., 2010). Lengler et al. (2010) simulated the CO2 injection test at this site and a good 
match in the bottomhole pressure of the injection well was obtained when a permeability of 90 
mD was used. In this study, the permeability in Ktzi 201 to be 89 mD (in the case not shown) 
was estimated, which is very close to that reported by Lengler et al. (2010). 
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Table 3: Comparison of estimated permeability with the geometric and arithmetic mean 
permeability from core analysis (Norden et al., 2010), and the calibrated permeability in 
Wiese et al. (2010). Geometric and arithmetic means are calculated based on the 
permeability data determined from borehole logging using the Coates equation (Norden et 
al., 2010) 

Core ID Core Data (Norden et al., 2010) Wiese et al. (2010) This Study 

Ktzi200 Overall (depth: 599.6–615.8m) 

geometric mean: 261 mD 

arithmetic mean: 560 mD 

harmonic mean: 4.25 mD 
Upper Layer (depth:599.6–608.3m) 

geometric mean: 312 mD 

arithmetic mean: 354 mD 

harmonic mean: 260 mD 
Lower Layer (depth: 609.9–615.8m) 

geometric mean: 706 mD 

arithmetic mean: 1,002 mD 
harmonic mean: 269 mD 

Overall (thickness: 14.6 m)  

63 mD 

Overall 

Upper Layer  
(thickness: 8 m) 55 mD 

Lower Layer  
(thickness: 8 m) 217 mD 

Ktzi201 Overall (depth:600.6–617.6m) 

geometric mean: 332 mD 

arithmetic mean: 755 mD 

harmonic mean: 33 mD 
Upper Layer (depth: 600.6–608.9m) 

geometric mean: 243 mD 

arithmetic mean: 506 mD 
harmonic mean: 74 mD 

Lower Layer (depth: 609.6–617.7m) 

geometric mean: 664 mD 

arithmetic mean: 1,062 mD 
harmonic mean: 184 mD 

Overall (thickness:17.6 m)  

90 mD 

Overall 

Upper Layer 

(thickness: 8 m) 

38 mD  
Lower Layer 

(thickness: 8 m) 

127 mD 
 

Ktzi202 Overall (depth: 593.7–610.7m) 

geometric mean: 15 mD 

arithmetic mean: 425 mD 
harmonic mean: 0.5 mD 

Upper Layer (depth: 593.7–602.3m) 

geometric mean: 525 mD 

arithmetic mean: 718 mD 
harmonic mean: 171 mD 

Lower Layer (depth: 602.3–610.7m) 

geometric mean: 0.39 mD 
arithmetic mean: 0.93 mD 

harmonic mean: 0.2 mD 

Overall (thickness: 8 m) 

109 mD 

Overall 

Upper Layer  
(thickness: 8 m) 
86 mD  

Lower Layer  
(thickness: 8 m) 

0.02 mD 
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The permeability estimate for the top sandstone layer is lower than for the lower sandstone layer 
in Ktzi200 and Ktzi201, which is consistent with the core logging. In Ktzi202, the estimate for 
the lower layer has very low permeability and the top layer has a permeability of 86 mD, which 
is in a good agreement with the core logging. From the core logging of Ktzi202, there is only a 
layer of sandstone (high permeability) in this location; below the sandstone layer is mudstone of 
low permeability. 

 
Figure 27: Conceptual view of the flow condition in the pumping tests in the Ketzin site. 

 

The effective permeability (keff) is expected to be between arithmetic (kA) and harmonic (kH) 
means of the system (Matheron, 1967; Sanchez-Vila et al., 2006). When the fluid flow is parallel 
in a layered system, the keff tends to be close to the arithmetic mean of the layer permeabilities 
(Javandel and Witherspoon, 1969; Long et al., 1996). When the flow is perpendicular to the 
layers, the keff tends to close to the harmonic mean (Long et al., 1996). When k is a multi-
lognormal stationary random function with isotropic correlation structure, Matheron et al. (1967) 
showed that keff is close to the geometric mean. The calibrated keff values in the near-well zones 
are between their harmonic and geometric means, indicating that the sandstone layers are not 
well connected horizontally and the fluid flow in vertical directions is significant. As described 
by Förster et al. (2010), the sandstone unit (channel facies) in the Stuttgart formation is 
composed of layers of individual sandstone bodies stacked together forming the elongated 
sandstone channel belt. Due to the finite volume of the individual sandstone layers near the 
wells, fluid flow through the vertical interfaces is necessary to reach the far-field regions (as 
shown in Figure 27). 

4.2.4.2 Consistency of the Estimated Low-Permeability Barrier between Ktzi200 and Ktzi201 
with CO2 Injection Test Results 

On the connectivity between the wells, previous wisdom was that Ktzi200 and Ktzi201 were 
well connected, belonging to the same channel, while Ktzi202 might not be well connected with 
Ktzi201/Ktzi200. Supporting this argument is that the Ktzi200 and Ktzi201 boreholes have 
similar lithological profiles, and that of Ktzi202 is different. The CO2 injection test in Ktzi201 
showed an early arrival of CO2 in Ktzi200 (27 days), but a delayed arrival at Ktzi202 (271 days). 

The pumping test results showed that when fluid was pumped from one of the Ktzi200/ Ktzi201 
pair, the pressure response in the other well was extremely small. To the contrary, the responses 
to pumping between Ktzi202 and Ktzi201/Ktzi200 are fairly large. Wiese et al.(2010) initially 
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hypothesized that an impermeable region might be present between Ktzi200 and Ktzi201, based 
on analysis of the pressure drawdown data. However, they subsequently excluded this possibility 
after analyzing the pressure arrival time between the two wells (Ktzi200 and Ktzi201). They 
found the pressure derivative signal (dp/dt) travels the distance between Ktzi200 and Ktzi201 
pretty fast (in about 12 minutes) and the travel time is proportional to the distance compared to 
those between Ktzi202 and Ktzi200/Ktzi201. They concluded that a large-scale no-flow 
boundary cannot exist between Ktzi200 and Ktzi201. However, the early-time portion of the 
pressure signal was dominated by the small heterogeneous feature such as fracture/thin layer of 
highly permeable sandstone. When pumping started, fluid flow was mostly through these highly 
permeable pathways. Over time, the pressure gradient between the high and low permeable 
layers decreased. The late-time drawdown was more determined by the effective permeability 
over a large influence volume (thus heterogeneity at a larger scale). Similar responses are 
observed in pumping tests in layered porous medium with contrasting permeability (Javandel and 
Witherspoon, 1969) and fractured rock (Moench, 1984). Therefore, it was likely that the 
presence of high-permeable thin layers embedded in these low-permeability barrier zones caused 
the fast arrival of pressure signal (dp/dt). A model was developed to prove this concept in 
Section 4.4. 

Norden and Frykman (2013) simulated the facies distribution using geostatistical methods. Their 
work integrated regional geology, seismic data, core logging data, and other information, to 
provide a geological model describing the large-scale facies distribution. Based on 60 
realizations they obtained, they argued that it was very likely that the channel bodies of the 
drilled boreholes are related to the same channel or to two channels which are connected. All of 
their 60 model realizations showed the sandstones in the Ktzi200 and Ktzi201 boreholes were 
located in the same channel belt system, and some of the realizations showed floodplain facies 
were present between the Ktzi202 and Ktzi200/Ktzi201 (Norden and Frykman, 2013). 

Different from previous understanding, the current study concludes that a low-permeable zone 
was present between Ktzi200 and Ktzi201 while highly permeable channels connect Ktzi202 and 
Ktzi200/Ktzi201. First, the calculated pressure drawdown with this configuration matches the 
pressure data of the pumping tests well. Second, although similarity exists between lithological 
profiles of the Ktzi200 and Ktzi201 boreholes and they are likely to be in the same channel, the 
chances are good that the pores between them are filled by clay minerals and the individual 
sandstone bodies are not well connected (as shown in Figure 27). Core analysis showed 
cementation is quite common at the site and the sandstone pores are often filled by clayey and 
flake-looking minerals (Norden et al., 2010). Depending on the grade of cementation, the 
porosity and permeability of the sandstones can decrease by orders of magnitude (Norden et al., 
2010). 

Furthermore, a set of electrical resistivity (ERT) data provides new evidence regarding the 
presence of a low-permeability zone between Ktzi200 and Ktzi201. Cross-hole electrical 
resistivity surveys were conducted using the permanent vertical electrical resistivity array 
(VERA) to track the CO2 migration in the Ketzin site (Kiessling et al., 2010; Martens et al., 
2012). The displacement of the brine originally filling the pores with supercritical CO2 results in 
an increased electrical resistivity in place. ERT provides a way to image the resistivity changes 
caused by CO2 migration (Schmidt-Hattenberger et al., 2011). The ERT results of Mertens et al., 
2012 (Figure 28) showed a significant resistivity increase at the reservoir level from the 
beginning of the CO2 injection in June 2008. The high-resistivity region (high CO2 saturation) in 
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the cross-hole section expanded over time and stabilized after 2 years of injections. The 
resistivity profile in June 2011 clearly shows that a vertical low-resistivity zone exists near the 
Ktzi200 side, indicating the zone has low permeability and blocked the supercritical CO2 from 
entering the pores of this zone. 

 
Figure 28: Electrical resistivity as a function of time from ERT monitoring data (Martens et 
al., 2012) 

 

If there is a low-permeability barrier between Ktzi200 and Ktzi201 and high-permeability 
channels between Ktzi202 and Ktzi201/Ktzi200, an obvious question is why CO2 arrived at 
Ktzi200 much earlier than Ktzi202. In Section 4.4, an explanation for this seemingly 
contradictory phenomenon was proposed.  

4.2.4.3 Possible Presence of Low Permeability Boundaries Outside of the Near-Well Region  

The inversion results indicate that the wells are situated in a semi-closed system. The near-well 
region is bounded by low-k regions except for 1 or 2 sides with high-k regions. As shown in the 
comparison between the Cases 1 and 2, incorporating this semi-closed boundary structure in the 
model is essential for reproducing the pressure responses in the pumping tests. Evidence 
supporting the validity of this conclusion is that, after pumping, most wells fail to recover to their 
original level over a long period of time (days to weeks). As mentioned by Beutler et al. (1999), 
the Stuttgart formation reflects a depositional style change from playa to fluvial environment, so 
the presence of one-ended fluvial channels is plausible from the geology standpoint.  
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Figure 29: CO2 plume inferred from 3-D seismic data in Martens et al. (2012). 

 

The inversion results of this study showed a consistent low-permeability zone in the northern 
boundary region. The core loggings show the thickness of the sandstone unit of Ktzi 202 
borehole is almost half that of Ktzi 200/Ktzi 201 (Norden et al., 2010). Norden and Frykman 
(2013) reported that the sandstone unit was not observed in the top of the Stuttgart formation in a 
borehole (Ug Ktzi 163/69, in Norden and Frykman (2013)) located in the northeastern region and 
approximately 4,000 m away from the site. It is possible that the closed end is present due to the 
sandstone unit thinning out in the northern region near the Ktzi 202.  

Three-dimensional (3-D) seismic surveys, shown in Figure 29, suggest that the CO2 plume 
extends laterally to the western direction after 15 months of injection (Martens et al., 2012). The 
plume showed a significant amount of CO2 between Ktzi 201 and Ktzi 202, while a relatively 
small amount of CO2 was detected behind Ktz i202 (Martens et al., 2012). A possible 
explanation is as follows: a high-permeability sandstone channel provides good connection 
between Ktzi 201 and Ktzi 202. When CO2 was injected in Ktzi 201, the pressurized CO2 pushed 
the brine between Ktzi 201 and Ktzi 202 to the northern boundary zones. Due to the low 
permeability of the northern boundary zones (and other parts of the semi-closed structure) the 
brine displacement is limited at a low rate, resulting in the accumulation of brine in this region 
and the delay of CO2 arrival to this region. Although CO2 transport is a complex phenomenon 
controlled by many factors besides permeability, this semi-closed structure estimated through 
inverse modeling of the pumping test data seems to provide a plausible explanation of the CO2 
plume inferred from 3-D seismic surveys. 
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4.3 DETECTION APPLICATION TO HYPOTHETICAL LEAKAGE PROBLEMS 

4.3.1 CO2 Pilot Test at Ketzin 

CO2 injection at Ktzi 201 was conducted from June 26, 2008 to August 29, 2013. The injection 
rate varies significantly during the 5-year operation, from 0 to a maximum rate of 58 kg/min (see 
Figure 30). The total injected mass is 67,271 tonnes CO2 and the average rate is 26.6 kg/min. 
Pressure has been monitored at a sensor located at a depth of 550 m in the injection well, and at 
the well head of the injection well and two monitoring wells. The bottomhole pressure at Ktzi 
201 shows significant variations with time, which are caused by changes in injection rate (Figure 
30). 

 
Figure 30: Actual CO2 injection rate (in red) and bottomhole pressure (in blue) at a depth of 
550 m at the injection well, with measurement frequency of every 5 min, as well as the step 
rates of injection used for modeling. 

 

To test the effectiveness and efficiency of above-zone pressure monitoring in detecting leakage 
through wells and faults, GFZ drilled an above-zone monitoring well (P300) into the shallow 
Exter formation to a depth of 440 m in August 2011. This formation is 42-m thick, consists of 
three high-permeability sandstone layers, with a total thickness of 12 m, and is 175 m above the 
Stuttgart formation. As shown in Figure 31, P300 is located at (7,249.9 m, 6,923.07 m), is 
relatively close to Ktzi 200 at (7,269.5 m, 6,801.6 m), Ktzi 201 at (7,219.5 m, 6,803.7 m), and 
Ktzi 202 at (7,273.6 m, 6,901.4 m), but is ~ 4 km away from the only appraisal well (Ktzi 
163/69) (see Figure 18). Pressure monitoring at P300 started in August 2011; it appears that the 
monitored pressure does not experience any anomalies (i.e., there is no indication of pressure 
increases induced by leakage from the underlying, pressurized storage formation). 
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Figure 31: Locations of the injection well (Ktzi 201), two monitoring wells (Ktzi 200 and 202) 
in the storage formation, one monitoring well (P300) in the above zone, and the leaky well 
(LW) connecting the storage formation to the above zone. 

 

4.3.2 Leakage Problem Formulation 

In order to apply the developed methodology for early leakage detection to the Keztin site, this 
study hypothetically introduced a leaky well at (6,625.0 m, 7,125.0 m) (see Figure 31). The leaky 
well is located 675 m away from the injection well, and lies within the monitored CO2 plume. 
The leaky well connects the storage formation with the shallow Exter aquifer. The radius of the 
leaky well is 0.11 m, and the well permeability considered varies from 10-7 to 10-11 m2. In this 
way, a hypothetical leakage problem was formulated. It was assumed in this example that the 
presence of a potentially leaking well was known, but its properties were not.  

To apply the detection methodology to the hypothetical leakage problem, this study: (1) 
developed the forward model by including the storage formation, the caprock, and the above-
zone aquifer, and by using the revised geologic model of the storage formation; (2) conducted 
the forward simulation of the CO2 injection and CO2/brine leakage through the leakage well; (3) 
used the simulated pressure at the three wells (Ktzi 200, 201, and 202) in the storage formation, 
and the simulated pressure at P300 in the shallow aquifer as the “true” monitoring data; (4) 
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employed the leakage detection methodology to estimate the leaky well permeability, and 
compared the estimated value with the “true” value used for generating the monitoring data; (5) 
simulated the CO2 injection into the system with the leaky well and its estimated permeability, 
and compared the CO2 arrival time at the leaky well with the earliest time when the leakage is 
detected with confidence; and (6) demonstrated the benefits of the early leakage detection 
methodology. 

The detectability of leakage through the leaky well by using monitoring data at the four wells 
depends on (1) the injection rate, (2) the leakage rate (i.e., the leaky well permeability), and (3) 
noises in the pressure data. In order not to significantly deviate from the actual injection history 
and injection rate at the pilot-scale test site, the total injected CO2 mass in the hypothetical 
example was constrained to less than 100,000 metric tonnes (a value on which LBNL and our 
project partner GFZ agreed) in the base case, but the length of injection period was varied. Table 
4 shows the different combinations of leaky well permeability, injection rate, and degree of 
pressure data noise for the leakage problem. Note that the injection period was fixed at 2 years. 
For each combination of detection application, the forward simulation was reran and the 
“monitoring” data generated, the detection conducted, and the benefits of the early detection 
results evaluated. For each application, all parameters in the forward models during the inversion 
are kept unchanged from their values used in the forward simulation to generate “monitoring 
data”. 

 

Table 4: Different combinations for the leakage problem with varying leaky well 
permeability, injection rate, and whether or not with pressure data noises 

Leaky Well Permeability (m2) Injection Rate 
Pressure Data Noises (standard 

deviation) 

10-7, 10-8, 10-9, 10-10, or 10-11 1.59 kg/s or 15.9 kg/s 0.1 or 0 bar 

 

4.3.2.1 Forward Modeling 

The forward model for simulating the two-phase CO2-brine flow includes the Stuttgart 
formation, the Weser and Amstadt formations (caprock), and the Exter formation (the above-
zone aquifer). To have negligible boundary effects, the revised geologic model was extended in 5 
km × 5 km to a region of 15 km × 15 km, by extending 5 km to each direction (see Figures 32 
and 33). The extended area is beyond the CO2 plume, and a constant elevation is used from the 
edge of the geologic model (see Figure 31) because only the formation thickness is relevant to 
the single-phase brine flow. Within the geologic model domain, all thickness and elevation of all 
layers are kept unchanged from the geologic model for the Stuttgart formation. A constant 
thickness of 175 m and 12 m are used for the combined Weser/Amstadt caprock and the Exter 
formation (see Table 4). 

4.3.2.2 3-D Model Development 

First a two-dimensional (2-D) mesh is generated that has varying mesh resolution in the 15 km × 
15 km domain, from cells sizes of 1 km × 1 km near the boundaries to very local refinement near 
the injection well and the leaky well. Figure 32 shows the generated 2-D mesh (i.e., the map 
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view of the generated 3-D mesh). In the vertical direction, the 3-D mesh has a total of 24 mode 
layers, with 3, 3, 16, 1, and 1 layer(s) for the lower, middle, and upper Stuttgart formation, the 
combined Weser/Amstadt unit and the Exter formation. The lower and middle Stuttgart units 
have low permeability and porosity, while the upper Stuttgart unit has high porosity and 
permeability, based on the revised 3-D geologic model. 

 

Table 5: Geometric and hydrogeologic parameters for the storage formation system 

Parameters 
Lower 

Stuttgart 
Middle 

Stuttgart 
Upper 

Stuttgart Weser/Amstadt Exter 

Thickness (m) 36 12 24 175 12 

Model Layers 3 3 16 1 1 

Porosity Geomodel Geomodel Geomodel 0.14 0.33 

Permeability Geomodel Geomodel Geomodel 0.000029 mD 1,800 mD 

Srw 0.5 0.5 0.5 0.5 0.5 

SrCO2 0.25 0.25 0.25 0.25 0.25 

Relative perm. mVG 0.95 0.95 0.95 0.95 0.95 

 

 
Figure 32: Map review of the generated 3-D mesh with local mesh refinements around the 
injection well and the leaky well, as well as in the estimated area of CO2 plume. 
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Figure 33: Generated 3-D mesh with coarse mesh far away from the injection and 
monitoring region and local mesh refinement around the injection well and the leaky well. 

 

The complexity of the Ketzin site stems mainly from significant heterogeneity in porosity, 
permeability, and other rock properties. Figure 34 shows the spatial variability of permeability in 
Layers 4 through 8 in the upper Stuttgart unit in the developed 3-D flow model. (Note that Layer 
3 in the upper Stuttgart formation has a low porosity and permeability.) In comparison with each 
of these five layers, Layer 6 may be of more interest as it connects the injection well and the 
leaky well through a high-permeability channel. For Layer 4, the permeability is very high near 
the leaky well, but much smaller near the injection well; as long as CO2 leaks through the leaky 
well, it may also migrate into the high-permeability zone of Layer 4 after CO2 enters the leaky 
well through a deeper layer. 
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Figure 34: Model-layer permeability field, showing significant spatial variability. Layer 
numbers increase from top to bottom. 

 

4.3.2.3 Forward Modeling for Obtaining “Monitoring” Data of Pressure 

For each application, TOUGH2-MP/ECO2N was used to simulate the responses of CO2 
saturation, and pressure perturbations to CO2 injection at Ktzi 201 and brine/CO2 leakage at the 
leaky well. The pressure profiles (with time) at Ktzi 200, 201, and 202 in the storage formation, 
and at P300 at the above-zone aquifer were extracted and considered as pressure monitoring data 
to be used for the inversion in the next section. Figure 35 shows these pressure profiles for 
different leaky well permeability in the cases of constant injection rate of 1.59 kg/s for 2 years. 
The evolution of the pressure at each monitoring well was almost the same when the leaky well 
permeability was smaller than 10-9 m2, providing insensitive leakage signals. This indicates that 
it might not be feasible to accurately estimate the leaky well permeability when the effective 
permeability is too small. 
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Figure 35: Monitoring data of pressure (a) at Ktzi 201, (b) Ktzi 200, and (c) Ktzi 202 in the 
storage formation, and (d) at P300 in the above-zone aquifer generated for the different 
cases of leaky well permeability values using forward modeling. 

 

4.3.3 Inversion for Leakage Detection 

In all applications, the only parameter to be estimated was the leaky well permeability, while the 
location of the leaky well was fixed. This represents an example of leakage detection for known 
abandoned wells, whose locations can often be determined by drilling record search during the 
site characterization phase. As mentioned before, only one monitoring well was used for the 
inversion in the above-zone aquifer and four wells in the injection zone. 

4.3.4 Results of Leakage Detection and Discussion 

4.3.4.1 Examples with 1.59 kg/s Injection Rate and 180-day Monitoring Data 

This application includes the examples with five different leaky well permeabilities, an injection 
rate of 1.59 kg/s over 2 years, and no data noise. For each example, the detection via inversion 
was conducted using the first 180-day monitoring data. Figure 36 shows the match between the 
estimated leaky well permeabilities and their true values. The standard deviations of the 
estimated permeabilities are small (not shown), and the largest one is only 0.02. The estimated 
permeability was accurate for the examples with the leaky well permeability equal or higher than 
10-9 m2. For a lower leaky well permeability, the estimated permeability deviates from its “true” 
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value. This is because the pressure data are not sensitive to the leaky well permeability as shown 
in Figure 35. Note that the initial guess for the inversion of each example is 10-8 m2. 

 

 
Figure 36: Comparison between the true and estimated leaky well permeability for the five 
different leaky well permeabilities, with an injection rate of 1.59 kg/s and no pressure data 
noises 

 

Figure 37 shows the CO2 plume in the overlying aquifer (Layer 1) and all the model layers of the 
upper Stuttgart unit (Layers 4 to 18) at 300 days of injection for a leaky well permeability of 10-9 
m2. The overall 3-D plume showed a strong effect of CO2 buoyancy in the heterogeneous storage 
formation. In deeper layers (Layers 11–18), CO2 occurred only near the injection well. The 
injected CO2 mainly occupies the high-permeability zones in the top seven model layers (Layers 
4–10, with 10 m thickness). At ~255 days, CO2 arrived at the leaky well preferentially through 
Layer 6, and migrated upward to Layer 4, and farther up to the shallow aquifer (Layer 1). It is the 
sand channel of high permeability between the injection and the leaky well in Layer 6 that leads 
to an early arrival of CO2 plume to the leaky well at this heterogeneous site, which was much 
earlier than in a homogeneous storage formation. It is very important to have a site-specific 
model that can accurately account for CO2 plume migration to be able to estimate and predict 
leakage.  

In the case of leaky well permeability of 10-9 m2, the time of detection was 180 days, while the 
CO2 arrival time at the leaky well was 255 days, indicating that there was a time lag between the 
detection time and the occurrence time of the actual risk of CO2 leakage. This time lag can help 
to design and employ leakage mitigation measures. Figure 38 shows the evolution of gas 
saturation at the leaky well in the above-zone aquifer. The arrival of CO2 in the above-zone 
aquifer was as early as 200 days after the CO2 injection starts in the case of kL = 10-7 m2. It seems 
in this case that the time lag was too small and the benefit of early leakage detection was not 
significant because the sand channel between the two wells in Layer 6 significantly shortens the 
CO2 arrival time. However, CO2 arrival time to a leaky well depends on many factors, including 
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the preferential flow channel connecting the injection well and the leaky well. As the leaky well 
permeability becomes smaller, it takes a longer time for CO2 to migrate up the leaky well.  

 

 
Figure 37: CO2 plume distribution in all layers of the upper Stuttgart formation at 300 days 
of injection in the case of kL = 10-9 m2. The map is zoomed in for Layer 1 to show the CO2 
leakage in the overlying aquifer. Layers numbers increase from top to bottom. 
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Figure 38: Evolution of gas saturation at the leaky well in the above-zone aquifer for four 
different leaky well permeabilities, with an injection rate of 1.59 kg/s and no pressure data 
noises. 

 

4.3.4.2 Examples with 15.9 kg/s Injection Rate and 2-year Monitoring Data 

This application included the same five leaky well permeabilities ranging from 10-7 to 10-11 m2, 
but the injection rate was increased by a factor of 10 compared to Section 4.3.4.1. As shown in 
Table 6, the estimated leaky well permeability was very close to its true value, with a very small 
standard deviation, for a wide range of well permeabilities. When the injection rate was 1.59 
kg/s, even with a 2-year period of monitoring, the accuracy of the estimate did not improve for 
cases with leaky well permeability lower than 10-9 m2. This enhanced detectability with higher 
injection rate was mainly attributed to distinct pressure evolution at the monitoring wells. This 
indicated that with increase in the injection rate, the inversion-based detection methodology can 
detect the leaky well with higher accuracy. 

 

Table 6: The estimated leaky well permeability and its standard deviation (using all data 
from monitoring and injection wells) in comparison to the “true” value and initial guess for 
the inversion process 

Case 
Number True value Initial guess Estimate STD 

BC1 -10.0 -8.0 -10.000 0.1884E-03 

BC2 -11.0 -8.0 -11.001 0.1737E-03 

BC3 -9.0 -8.0 -8.995 0.5218E-03 

BC4 -8.0 -9.0 -7.999 0.2134E-03 

BC5 -7.0 -9.0 -7.000 0.1053E-03 
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4.3.4.3 Examples with 1.59 kg/s Injection Rate and Up to 2-year Monitoring with Data Noise 

This application introduced random data noise using a zero mean and a standard deviation of 0.1 
bar to the monitoring pressure. For the leaky well permeability of 10-8 m2 with 1.59 kg/s 
injection rate, four different monitoring periods were tested: 0.5, 1, 1.5, and 2 year. The results 
indicated that the detection can produce almost the same leaky well permeability estimates as 
those without data noises. The largest deviation for the estimated leaky well permeability was 
only ±0.06 (in logarithm), reassuring the effectiveness of the methodology. The size of the 
deviation was not necessarily correlated to the monitoring period, but dependent on the 
distribution of random noise, which indicated that the leakage signals at the monitoring wells 
were sufficiently strong as early as 0.5 year at this leaky well permeability.  

4.4 CONCLUSISONS 

The methodology of early leakage detection via inversion of pressure signals was applied to a 
hypothetical leakage problem at the Ketzin CO2 pilot site in Germany. This problem was 
formulated by introducing a leaky well located 675 m away from the injection well, with varying 
well permeability and thus leakage rate. It was assumed that the location of the well was known 
(e.g., from historical well records), but not its properties. Note that at Ketzin, no signals of 
leakage of brine and CO2 through the Weser/Amstadt formation (caprock) from the Stuttgart 
formation to the Exter formation (the above zone) were observed during the CO2 injection over  
5 years. The monitoring system consists of one injection well (Ktzi 201) and two monitoring 
wells (Ktzi 200, 202) in the storage formation, and one monitoring well (P300) in the Exter 
formation. The application demonstration includes the three components of the framework of the 
leakage detection system: site characterization, model calibration, and leakage detection. 

The site characterization at Ketzin, mainly conducted by Geoforschungszentrum Potsdam (GFZ), 
included the drilling, geophysical logging, and coring and measurements, baseline 3-D seismic 
surveys, pumping tests prior to CO2 injection, and development of a 3-D geologic model. All the 
site characterization data show that the Stuttgart formation is very heterogeneous, in particular in 
the upper 18 m of high-permeability sandstone.  

A model calibration was first conducted to understand the heterogeneous distribution of 
permeability in the Stuttgart formation using pumping test data. These pumping tests conducted 
prior to the CO2 injection test included nine pressure-time datasets in total, and one dataset from 
a well in the storage formation when pumping was conducted in each well. A forward model was 
developed using TOUGH2/EOS9, and the inverse modeling was conducted using iTOUGH2-
PEST. The model calibration demonstrates that the pumping test datasets contain sufficient 
information of large-scale spatial-varying permeability. Specifically, the storage formation in the 
near-well region contained sand channels connecting Ktzi202 and Ktzi 201/200, and a low-
permeability zone between Ktzi 201 and 200, and the near-well region was located in a semi-
closed system with a flow barrier located in the north. These large-scale geologic features 
revealed from the pumping test calibration are consistent with the field monitoring of CO2 
injection. For example, the low-permeability zone between Ktzi 201 and 200 was consistent with 
the low-resistivity zone shown from the cross-well ERT data, while the nature of a semi-closed 
system was consistent with the four-dimensional (4-D) seismic data showing westerly CO2 
plume migration. 
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The early leakage detection method was then applied to the hypothetical leakage problem using 
the updated geologic model. The “monitoring” pressure at the three wells in the storage 
formation and at the one well in the above zone was obtained by simulating the CO2 injection 
into the Stuttgart formation with the introduced leaky well. The forward model was developed 
for an extended 3-D domain of 15 km by 15 km covering the Stutgart formation, the 
Weser/Amstadt formation, and the Exter formation of ~260 m thickness in total. All the 
geometric and hydrogeologic parameters were based on site-specific data. Assuming a moderate 
CO2 injection rate of 1.59 kg/s for 2 years, the detection methodology can accurately estimate the 
leaky well permeability when the permeability was higher than 1,000 darcy, indicating that the 
methodology was applicable to large leakage events with high flow rates. When the leaky well 
permeability was less than 1,000 darcy, the pressure signals were not sensitive to permeability, 
and the detection fails. However, with an increase in injection rate by a factor of 10, a leakage 
event via a well of 10 darcy or higher can be accurately detected.  

The benefit of early leakage detection can be seen from the difference between the detection time 
using pressure signals and the CO2 arrival time at the leaky well. The detection time was 180 
days, while the CO2 arrival time is 255 days. This time was relatively short due to the presence 
of a high-permeability preferential flow path connecting the CO2 injection location and the leaky 
well.  
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5. SUMMARY AND CONCLUSIONS 

This report summarizes the development, demonstration, and application of an inversion-based 
methodology for early leakage detection using pressure and surface-deformation monitoring 
data. The early leakage detection technique was complementary to current techniques for CO2 
leakage detection which are based on the physical, geophysical, or/and geochemical signatures 
that are induced by migrating CO2 and that can be observed in the deep and shallow subsurface, 
at the land surface, and in the atmosphere. Many of these techniques have relatively low spatial 
resolution and coverage, in comparison to the footprint of CO2 plumes, and all these techniques 
can only detect anomalous CO2 signals long after CO2 leakage has first occurred. The new 
technique proposed in this project has the ability to provide an early indication of potential CO2 
leakage before it occurs. 

The framework of early leakage detection consists of four key components: site characterization 
for known surface faults and abandoned wells, early detection of brine leakage signals via joint 
inversion, CO2 leakage prediction and monitoring, and decision-making for risk management 
and mitigation. The methodology for early detection of brine leakage signals was based on the 
fact that pressure and surface-deformation anomalies caused by brine leakage propagate in the 
subsurface much faster than CO2 migrates. Thus, if successful, brine leakage could be an early 
indicator for potential CO2 leakage, ideally long before the CO2 plume would reach the leakage 
location. The early detection methodology involved automatic inversion of anomalous brine 
leakage signals to estimate the location and permeability of leaky features in the caprock. With 
regards to pressure measurements, these signals should be obtained not only in the injection 
formation, but also in the first aquifer overlying the caprock. A global sensitivity analysis was 
conducted to better understand under which conditions pressure anomalies in the overlying 
formations and the storage formation can be clearly identified as leakage signals, and evaluate 
signal detectability for a broad parameter range considering different detection limits and levels 
of data noise. The detectability in terms of detection time and detection region for a given 
leakage scenario (e.g., number, location, and permeability of leaky wells) can help understand 
the applicability of the early leakage detection methodology. 

The inversion methodology for early leakage detection was used to estimate leakage parameters 
(i.e., the location and permeability of the leaky well) in four synthetic examples of idealized two-
aquifer-and-one aquitard storage systems, with an injection well and a leaky well, for different 
monitoring scenarios. In Example 1, the formation parameters and pressure data were not 
associated with uncertainties and estimation errors. In this case, the inversion methodology can 
produce accurate leakage estimates, no matter whether the detection problem itself is unique or 
non-unique depending on the number and configuration of monitoring wells. In a random 
configuration of two monitoring wells, the inversion methodology may need to test for different 
initial location guesses to have accurate estimates of the leakage parameters and an optimal 
match with pressure data. The detection was generally stable after the first a half year of 
injection and monitoring. In Example 2, with two monitoring wells and large pressure data 
noises, the inversion methodology can improve the estimation accuracy of the leakage 
parameters with increasing monitoring time as more data are available in the inversion. The 
detection accuracy and convergence speed with monitoring time depend on the actual 
configuration of the two monitoring wells. For an optimal configuration, an accurate detection 
can be achieved within the first 2–3 years of monitoring. When the formation parameters were 
uncertain and the pressure measurements were associated with large data noise (Example 3), the 
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detection can be improved by simultaneously calibrating formation parameters and leakage 
parameters. As shown in Example 4, joint inversion of pressure and surface-deformation 
measurements can significantly improve the speed of convergence toward the true solution of the 
leakage parameters and enable earlier, accurate detection of the location of the leaky well. This 
example demonstrates how high-resolution deformation data can help identify the leakage 
location and the pressure data from limited number of monitoring wells can help estimate the 
permeability of a leaky well or the leakage rate.  

Finally, the methodology of early leakage detection was applied to hypothetical leakage 
problems at the Ketzin CO2 pilot site in Germany. These problems were formulated by 
introducing a leaky well located at 675 m away from the injection well, with varying well 
permeability and thus leakage rate. At Ketzin, no signals of leakage of brine and CO2 through the 
Weser/Amstadt formation from the Stuttgart formation to the Exter formation were observed 
during the CO2 injection over 5 years. The monitoring system consists of one injection well and 
two monitoring wells in the storage formation, and one monitoring well in the Exter formation. 
A model calibration was first conducted to estimate large-scale spatial-varying permeability 
using pressure data observed during the pumping tests conducted prior to the CO2 injection test. 
A forward model was developed using TOUGH2/EOS9, and the inverse modeling was 
conducted using iTOUGH2-PEST. The model calibration indicated that the storage formation in 
the near-well region contained sand channels and a low-permeability zone, and that the near-well 
region was located in a semi-closed system with a flow barrier located in the north. The 
calibrated large geologic features were consistent with the field monitoring of CO2 injection. For 
early leakage detection, the “monitoring” pressure at four wells was obtained by simulating the 
CO2 injection into the Stuttgart formation with the hypothetical leaky well. The forward model 
was developed for an extended 3-D domain of 15 km by 15 km covering the Stuttgart formation, 
the Weser/Amstadt formation, and the overlying Exter formation of ~260 m thickness in total, 
using site-specific data. Using a moderate injection rate of 1.59 kg/s for 2 years, the detection 
methodology could accurately estimate the leaky well permeability when the permeability was 
higher than 1,000 darcy, indicating that the methodology was applicable to large leakage events 
with high flow rates. In case the CO2 injection rate increased by a factor of 10 (i.e., a half million 
tones CO2 per year), a leaky well with 10 darcy permeability or higher could be accurately 
identified. The benefits of early leakage detection can be seen from the difference between the 
detection time (180 days) and the CO2 arrival time (255 days) at the leaky well. Because the 
leakage pathway can be detected and characterized ahead of the arriving CO2 plume, some 
measures can be undertaken to mitigate the leakage risks, such as ceasing CO2 injection or 
pumping CO2 back out of the injection zone. 

The authors of this report realize that the work conducted so far shows promise in that early 
leakage detection via joint inversion has been successful for simplified test cases and a fictitious 
leakage scenario for the Ketzin site. Without prior optimization of monitoring well location, 
detection was achieved in many example cases, but only when the leakage pathways had 
relatively large permeability and clear anomalies could be recorded. Further work is required to 
test the detection framework envisioned in this study, for a larger range of conditions and 
eventually in comparison with data from a field demonstration site in which actual leakage 
signals have been measured.  
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